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Economic Opportunities of Bioelectricity from Cotton Gin Waste  

This work shows that direct combustion of cotton gin waste (CGW) at cotton gins can profitably 

generate electricity. Many bioenergy processing centers emphasize very large-scale operations, 

which requires a large and stable bio-stock supply not always available. Similarly, a small 

biorefinery processing gin trash at a cotton gin must wrestle with high volatility of cotton yields 

and price variation in cotton and electricity. Fortunately, the smaller scale allows these risks to be 

somewhat countervailing. Low cotton yields allow the limited gin trash available to be applied to 

the highest peak electricity prices in winter. Similarly, high yields with low cotton prices generate 

revenue from power generation throughout high winter electric prices.  

To assess profitability of an onsite power plant requires high resolution data. We utilize hourly 

electricity price data from 2010-2021 in West Texas and obtain a small data array of 15 years of 

gin trash at a medium sized gin. Prior analyses have had neither. We leverage limited CGW data 

to better leverage generous electricity price data by generating a Bayesian distribution for CGW. 

We simulate 10,000 annual CGW outcomes and electricity prices. Using engineering parameters 

for combustion efficiency, we show the expected internal rates of return of 19%-22% for a 1 MWe 

and a 2 MWe plant at a small gin. Simulations then compare economic returns to the variance of 

those returns which allows the analyst to present to investors a frontier of stochastic dominant 

return outcomes (risk-returns tradeoff) for plants of different sizes at different sized gins.  

Keywords: bioenergy, Bayesian simulation, cotton, cotton gin, electricity, optimization, IRR.  

JEL classification: C61, C63, Q12, Q16, Q42.  
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1. Introduction  

The more than three decades of cultivating dedicated crops for ethanol and biodiesel production 

has left a very mixed record. Concerns begin with the observation that corn ethanol and forest 

biodiesel show no measurable reductions in carbon releases. More serious, critiques show that 

biofuels from dedicated crops often accelerate environmental degradation by the expansion of corn 

cultivation onto marginal farmlands and the clearing of forest floors, degrading both prairie and 

forest soils. Yet the longer history of bioenergy production in the U.S. before the recent era has not 

centered on dedicated crops. In the late 19th century, biomass boilers began to chemically process 

biowaste to generate steam. That steam, in turn, powered an electric turbine used for power to 

process cultivated crops or forest residuals (del Rio et al., 2022).  

Over the 20th century, food processing industries began to consolidate, and many rural 

processing plants closed (Dimitri et al., 2005). In addition, falling electricity prices after the 1936 

Rural Electric Act created little incentive to invest in small scale, local bioelectricity (Kitchens, 

2014). By the 1990s, however, trends began to turn. Electricity prices began to rise, especially in 

rural areas (Sueyoshi and Goto, 2014). Further the volume of cotton gin waste continued to expand 

as gins grew larger and as cotton yields rose steadily (Gulati and Rollin, 2015; Reddy et al., 2017).  

Given the challenges that rural industries face, the addition of new revenue streams through 

bioenergy production can be an important contribution to the rural economy (see Golden et al., 

2024 for a comprehensive review of the economic value and job creation from biomass industry). 

The processes examined here also provide local environmental benefits. Biowaste management is 

cleaner when processed inside a contained system, such as a chemical boiler – a benefit of special 

significance given the ambient pollutants from cotton gin waste (Yue et al., 2014; Safferman et al., 

2009). Further, rural electric power generation is now overburdened. The rapid acceleration in 

peak electric prices in winter, when ginning is most active, means that new production helps to 

prevent brown outs (Shoreh et al., 2016; Billimoria et al., 2021). Currently, the impediments to 

biopower appear to be policy driven rather than technical or economic (Batidzirai et al., 2012).  

Current bioenergy policy emphasizes large, concentrated plants (Roni et al., 2017). To the 

extent bio-residual waste is used, current processes center on cofiring forest residuals with coal 

(Mirzaee et al., 2023) or processing almond and pecan shells at cogeneration plants (Wiltsee, 

2000). England’s Drax plant is a perfect example. The plant has replaced a large coal combustion 
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chamber entirely with wood pellets. That conversion is telling. This single operation requires a 

global biomass feedstock collection system, marked by aggressive clear-cutting and forest floor 

gleaning (Rahman et al., 2022) – all of which has been shown to create severe environmental 

damages (Blanco-Canqui and Lal, 2009).  

The effort to replace fossil fuels with large bioenergy systems has emphasized advances 

for more efficient combustion – turning a large percentage of the BTUs in the biomass into 

megawatts of electric power. This effort has stimulated research into gasification and pyrolysis to 

process biowaste at higher efficiencies (Farmer and Sinquefield, 2007). These technologies clearly 

show promise; yet over the last 30 to 40 years, these technologies have remained stubbornly 

expensive and, mostly, beyond full technical implementation (Capareda, 2023). This situation may 

improve, and these technologies may become more affordable and feasible. Yet, currently, 

gasification generates ‘slagging’ or tars in turbines, a problem that has eluded remedy for half a 

century (Farmer and Sinquefield, 2007). In the interim, traditional boilers, due largely to progress 

at U.S. papermills, have become far more efficient, often exceeding 30% conversion efficiency of 

wood pulp; and they are ready to deploy (Farmer and Sinquefield, 2007). At a time of extreme 

electricity price spikes, the system proposed can be implemented immediately.  

This work models the economic benefits of a supplemental ‘single cycle’ electric power 

system, meaning the system delivers power on short notice during peak use hours. This marks an 

important distinction from the much larger, utility scaled combined cycle bioenergy systems that 

supplement ‘base’ load through continuous operation. So, the proposed bioelectric system 

examined here is supplementary to core power generation systems. This supplemental power is 

easier to operate for food and fiber processing centers whose primary activity is not power 

generation; and, critically, that power can be timed to relieve very high use (high price) periods by 

selling to utilities through ‘day ahead’ power market sales, which as the name suggests, schedules 

power delivery a day ahead at a high contracted price to meet peak demand (Martelli et al., 2021).  

Using the example of cotton gin waste, this work shows that onsite power production at 

food and fiber processing facilities can be very profitable. Establishing a power plant on the same 

site as the processing facility renders feedstock transport costs effectively zero because, of course, 

CGW is already delivered with cotton seed and fiber. It adds needed revenue to rural processing 

plants and to producer cooperatives. Critically, investment choices also allow great flexibility. 
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Rather than ‘one size fits all,’ investments of large scale optimally scaled biotechnology operations, 

these investments can be tailored to investor risk preferences and to gin size. The analytic approach 

presented herein examines investments at different scales. We isolate stochastically undominated 

plant size alternatives for each size gin – a unique contribution to this literature. So, investors make 

choices that suit their risk preferences rather than force fit a single optimal investment scale.  

This work provides a unique treatment of the risks in bioenergy production. It 

simultaneously examines variation in cotton yields, cotton fiber prices, and peak, subpeak and base 

electricity prices. Investors can elect risk levels for a given level of return based on different 

investment scales. We know of no bioenergy analysis that adopts this flexible approach.  

The scope of application of this single bioenergy suggestion is significant. Across Texas, 

over 200 gins operate (Wade and Hudson, 2016). Wilde et al. (2010) reports that across the 30 

counties the Texas High Plains alone, during the years from 2000 to 2006, each county averaged 

33,158 tons of gin trash - enough to support one medium sized gin in each county. There is also a 

concentration of CGW in the seven largest counties, each producing 60,000 tons of CGW annually, 

enough to support one large gin in those counties. The added electric power output, especially 

when delivered at very expensive peak times in winter, is both a substantive needed supply for 

winter power and a substantial economic support for rural cotton gins.  

2. Previous Work of Bioenergy from CGW  

Prior explorations into the use of cotton gin waste (CGW) as a bioenergy feedstock goes back half 

a century. In 1972, gin trash was labelled a public health threat due to ambient air pollutants (Pala, 

1971). A decade later, Lacewell (1982) proposed to use CGW for bioenergy to generate electricity 

and, simultaneously, to remove the health threat. Lacewell noted that the energy content in one ton 

of CGW is about 14 million BTU, which Le Pori et al. (1982) noted could meet the entire energy 

needs of a gin in stripper harvesting areas. As Texas launched its renewable energy push in 2008, 

Capareda (2010) calculated that a ton of CGW also could produce 120 gallons of motor fuel using 

an updated version of Lacewell’s (1982) fluidized bed gasifier. Finally, as environmental 

challenges from CGW mounted, Multer et al. (2010) noted that conversion of CGW to biopower 

could greatly reduce existing dust, small particle, and lint fly emissions, all of which contain at 

least trace amounts of arsenic, bacteria, and pesticides (Multer et al., 2010). Due to the 2010-11 
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drought, industry leaders found that CGW can be used as a cattle feed supplement, reliably valued 

between $9-$12/ ton (Mullenix et al., 2021).  

Works also have considered bioenergy from CGW directly in the form of bioelectricity. 

Liu et al. (2009) completed a proof-of-concept to establish baseline profitability. Tangaoui and 

Farmer (2014), examined cross-correlations of prices of cotton seed oil to soybean oil, to palm oil 

and to biodiesel, which demonstrate enough long run price stability in cotton seed oil to prevent 

widespread gin shutdowns that might strand a bioenergy investment. Farmer et al. (2014) made 

the first attempt to consider stochastic processes that would affect a biorefinery from CGW. Yet 

data limitations, primarily from mandated non-reporting of hourly electricity prices have prevented 

full analyses of complex stochasticity: drought, cotton price risk, and changing electricity prices.  

This is the first study to examine the joint sources of variability in cotton yields, cotton 

fiber prices, and daily peak, subpeak, and base electricity prices. Analyses generate plausible risk-

return predictions across biopower investments from 1-6 MWe each for a small, and medium sized 

gin by repeated draws from the distributions of these multiple risks.  

This work then estimates returns and variance of power plants at gins for these various 

sizes from 1 to 6 MWe installed capacity. This work also presents a very realistic picture of the 

risk-return tradeoff options from various onsite power plant investments. We examine multiple 

biopower options available both to small and medium sized gins. Specifically, we generate a mean 

return and variance Frontier (or EV Frontier) that reveals the multiple power plant sizes available 

to each sized gin. The Frontier defines the set of second order stochastic undominated alternatives, 

which accounts for the uncertainties above. 

 This is an important point of departure from works that estimate a single optimal output 

scale under average conditions, which dominates engineering and economic literature on this 

subject. Though some works do treat uncertainty, it is often relegated to parameter sensitivity 

analyses. Even cases that have applied stochastic dominance (Domínguez, et al., 2021; or, much 

earlier, Lesser, 1990) the objective is to identify the single choice whereby the central planner can 

maximize average power output without accepting undo risk at that maximal output level.  
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We know of no work in any bioenergy assessment which is conducted at this level of data 

resolution and that allows for a more realistic risk presentation. We know of no other work that 

presents this level of flexibility in risk-return tradeoff information for investors. We expect 

subsequent works to improve on the multi-pronged model strategy introduced here. 

3. Overview of Modeling Process  

The modelling process is straight forward but does integrate many moving parts. We simulate the 

annual profitability of onsite power plants from one to six megawatts of installed capacity at cotton 

gins. We also consider two different sized gins – a small and a medium sized gin. We add up all 

the sources of annual revenue generated from cotton gin waste and subtract the annual marginal 

and financing costs of operation. We employ 10,000 simulated annual decisions.  

Most of the revenue comes from the sale of electric power generated from the combustion 

of CGW. The annual decision of how and when to allocate a year’s CGW to electric power is 

modelled as nine sequential monthly choices, starting in mid-December. The gin operator makes 

this decision in any given month to allocate some portion of on-hand (or remaining) gin trash to 

deliver power during peak, subpeak and base electricity prices periods during that month. Current 

month prices are observed as future monthly electricity prices remain stochastic.  

Most electricity sales occur during winter, timed to daily peak prices when possible. If 

CGW supply is moderately large, sales also occur during subpeak and base power hours.  

CGW is also expensive to store, especially because environmental hazards from CGW 

grow larger the longer CGW is stored on site. Fortunately, gin trash now can be sold as cattle feed. 

In our simulations, the choice to sell CGW directly as feed generally occurs at winter’s end 

(March). CGW is rarely held over for very high-priced summer power demand unless GGW supply 

is exceptionally large. In most years what CGW is left after winter is sold as cattle feed in March. 

The costs of operation are discussed below. Labor is the largest expense. Labor applied 

directly to power production and delivery is captured as marginal costs. We also assume higher 

fixed labor costs for a professional plant manager dedicated to harmonizing gin and powerplant 

operations. Based on an annual median income of around $90,000 in Texas1, we impose a $75,000 

 
1 Bureau of Labor Statistics  
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fixed cost for nine months out of a year effort to oversee power plant operations. We also model 

high annual financing costs. We adopt plant depreciation at 12 years rather than the more common 

20–30-year life of the plant. Finally, we limit total operating time per year for power generation; 

and, at times, this is an occasional binding constraint. Our purpose for these conservative 

assumptions is to capture better the inevitable learning curve costs for early adopters as they 

struggle to meet the requirements of the procedural plan filed by a licensed power evaluator.  

The largest contribution of this work, however, emerges from integrating multiple 

stochastic processes. Electricity prices in each price category for each month are stochastic as is 

annual CGW volume.  

We contrast this strategy to other bioenergy models which lean strongly on adoption of a 

one, singular representative optimal scale operation. Our analyses allow the decision environment 

to differ in numerous ways from year to year. What makes this more realistic risk modelling 

process possible is due to recent changes in public reporting of hourly electricity prices. We use a 

record of over 105,000 reported electricity prices - each hour for each calendar day for 12 years, 

allowing for a much richer presentation of the multiple sources of uncertainty.  

To simulate the annual decision to allocate CGW, we organize observed hourly prices from 

mid-December to mid-September into peak, subpeak, and base electricity prices for each of nine 

months - 27 variables in all.  

For each month we randomly draw one peak price, one subpeak price and one base price 

from the extensive price record available. We repeat this 10,000 times to generate 10,000 simulated 

decision years. Simulation results then provide an average annual return and a standard deviation. 

This process repeats for each of the six power plants sizes available for each sized gin. This allows 

us to organize results into risk-return graphs, or the outer envelope of an EV Frontier to visually, 

compare risk-return outcomes: from a ‘small-low risk’ scaled plant to a ‘large-high risk’ scaled 

plant. In this way, investors can make informed risk-return choices from an array of options.  

The greatest uncertainty in the simulations is the year-to-year variation in CGW. This 

deserves special attention. We have a very short CGW record: only 15 years at a small to medium 

sized gin as gins are reluctant to provide this information. Of benefit to us, that 15-year period 
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includes two years of very high rainfall and severe two-year drought (2011-12). Given more than 

a century of rainfall data, this wide range allows for a more realistic simulated CGW distribution.  

Of note, CGW volume is modelled as a quadratic response to rainfall, which has 

limitations. Yet we follow several decades of existing literature to estimate cotton yields based on 

a quadratic rainfall function, and cotton prices. As farmers and cotton co-ops investors use our 

information, we need it to match the large body of extension and academic work on cotton 

production (see McCallister et al., 2021). Presumably, many producers or larger coops have 

experience adjusting their own conditions to those estimates. What we do add is a Gibbs-sampled 

estimation of the parameters to estimate CGW. That lone extension generates a multi-modal CGW 

distribution rather than a single peaked estimate, which mimics the distribution in the raw data.  

The remaining constraints on the model are right hand side production constraints on 

choices to allocate CGW in a given year; conversion efficiency of one ton of gin trash to megawatts 

of electricity; adding up conditions for the several uses of cotton gin waste; constraints by the 

number of peak hours, subpeak hours, and base supply hours available in a given month; and other 

material balance constraints. We do conduct sensitivity analyses 

We conduct three separate sensitivity analyses: a lower conversion efficiency rate (less 

electricity per ton of CGW), a 40% drop in base period electricity prices (to conform to historic 

rates prior to 2010) and, following trends, a 10% increase in all electricity prices. Profitability 

remains high in all cases.  

As a final consideration, we attempt to address the possibility of plant obsolescence in a 

future energy economy, in particular the transition to a ‘hydrogen based’ economy. Much of that 

hydrogen would be generated through electrolysis. So, for completeness, we model a bolt-on 

anhydrous ammonia technology, which is one existing technology that employs electrolysis. 

Adding ammonia production to the array of choices for CGW use is currently less profitable than 

a stand-alone power plant; but this is largely due to very high cost of safety protocols in ammonia 

handling. The technical feasibility serves only a proof-of-concept scenario to suggest an electric 

power plant would survive anticipated technology shifts, at least at first, though may become even 

more profitable than these scenarios show.  
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The analytic model is detailed in the Appendix A. The main text includes the mechanics of 

the CGW allocation decision process; method for draws from electricity prices; the Gibbs sampling 

process to build distributions for annual cotton gin waste; and a distribution for ammonia prices 

from a regression analysis. The results are presented as financial outcomes, primarily as the return 

on invested capital for different levels of investment and borrowing. Finally, two graphs map a 

Frontier that plots all second order stochastic undominated alternatives as a risk-return graph: one 

for each size gin. Each graph plots the risk-return outcomes for six different power plant sizes.  

4. Data for Stochastic Analyses  

Cotton Gin Waste (CGW): We obtain CGW data from the Ropes Farmers Co-Op Gin in Lubbock 

County, Texas between 2004-2018. Fortunately, this period includes two of top five 2-year records 

for drought and one of the three highest 2 years rainfall events since 1908. We also obtain rainfall 

data for the same years from the ASOS-AWOS-METAR database (Iowa State University, 2022). 

Further, cotton fiber price data is obtained from (USDA, 2022). We use these data to generate an 

estimated sampling distribution of CGW by regressing CGW in a Gibbs sampled Bayesian 

regression on rainfall and cotton price.  

Electricity Prices: Electricity prices are obtained from ERCOT (ERCOT, 2022). We report 

‘Day-Ahead Market’ prices on an hourly and daily basis for 2010-2021 for the ERCOT West Hub 

and Load Zone, recording more than 105,000 price points. For convenience, we sort electricity 

prices by daily intervals of peak, sub peak electricity prices, and base electricity prices. In the 

analyses below, we estimate sampling distributions of peak, subpeak, and base prices for each 

month. These monthly price distributions are obtained by regressing hourly electricity prices on 

hourly temperature data (from the ASOS-AWOS-METAR database; Iowa State University, 2022) 

in each month over 12 years. This allows a Bayesian draw for the separate distribution estimates 

of daily peak, subpeak and base electric prices for each of nine months of analysis.  

Anhydrous Ammonia Prices: We use monthly anhydrous ammonia price data from 2014-

21, collected from DTN Progressive Farmer database (Progress Farmer, 2021). Anhydrous prices 

movements are tied to seasonal cycles rather than month-to-month fluctuations, so we follow the 

modelling approach in the established literature and group prices into intervals: (i) winter - 

December to February; (ii) spring - March to May; and (iii) summer - June to September. Ammonia 

prices are regressed on the prices and lagged prices of major crops and oil (USDA National 
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Agricultural Statistics Service, USDA, 2022) to generate an estimated distribution of seasonal 

ammonia prices, following (Schnitkey, 2021).  

5. Decision Process  

Figure 1 below illustrates the decision process across the nine-month decision period from January 

through September. The gin allocates CGW in any given year to biopower and to cattle feed sales 

(at $10/ton). At the start of the decision period, the volume of gin trash is known. Electric prices 

for the immediate month are also known; so, on January 1, the peak, subpeak and base prices for 

that January draw are known while prices in all future months are stochastic. 

Using Figure 1, given CGW on hand (Total CGW), the ginner maximizes expected profits 

across a year and confronts stochastic electricity prices for each future month (𝜇𝑝𝑖+𝑛, on Figure 

1). In panel A, we show that the ginner observes current monthly electricity prices (Obs. 𝑃𝑖; the 

red ‘E’ on Figure 1, Panel A) as the rest remain uncertain. The manager decides how much CGW 

to use in any month by maximizing expected profit for the year using current prices and the 

expected mean price (𝜇𝑝) in each electricity price category (peak, subpeak and base power) for 

future months. In the next month, the process repeats with a draw of electricity prices from the 

then drawn peak, subpeak and base prices.  

Once a decision is made, the available gin trash remaining is known and is to be allocated 

over the remaining eight months in the same fashion. The second panel on Figure 1 shows 

electricity price information updates be the information in red in period 2. The decision to 

maximize expected returns now takes place over the seven months. An option always open to the 

gin is to sell a portion or all remaining CGW as cattle feed at $10/ton, a stable price since the 2010-

2011 drought. There is no explicit risk aversion within the annual CGW allocation as investors and 

day-to-day managers operate consistent with investor preferences. Yet to carry gin trash forward 

is expensive.  

Holding over gin trash during the low electric prices of April and May (and early June) to 

sell in late June, July, and August is expensive. So, we assess a $2/ton/month storage charge to 

store remaining CGW, (suggested by site managers at Ropes, a small gin, and by Plains Cotton 

Growers, a large coop gin). In low or medium volume years, gins will sell remaining CGW at the 

end of March. Nonetheless, given very high expected summer electricity prices, plotted on Figure 
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1, years where there is an exceptionally large CGW volume, it is profitable to generate electric 

power through the summer and to skip power generation in April and May.  

We model power sold to local utilities through ‘day ahead’ pricing. So, a sale has a 

guaranteed price to produce the next day, often a little higher than the actual price, especially in 

winter. Though produced power also may be used to service onsite ginning needs, it is 

advantageous to sell at least some electricity to the local utility for some hours most winter days. 

Utilities routinely offer a price premium to ensure power delivery during the next day’s peak use, 

and peaking power can last 10 hours or more on the highest demand periods of winter.  

6. Model Parameters  

We generate a distribution for each of the 28 distinct sales decisions a power plant operator makes: 

peak, subpeak, and base electricity generation in each of nine months, and sales of CGW as cattle 

feed. Operating expenses are dominated by fixed and quasi-fixed costs: fixed costs include a 

chemical boiler, steam turbine, loan payments if not fully financed, and affixtures to plant 

operations; quasi-fixed costs are annual labor expenses dedicated to manage operations. Finally, 

marginal costs include per unit costs of electricity generation, and storage costs for CGW.  

The Appendix A details the model as the summed difference between all revenue streams 

and annual costs – subject to constraints plant size, conversion efficiency; limits on hours of 

operation, and material balance constraints. On the cost side, both fixed and quasi-fixed costs 

exceed existing engineering reports on the costs of installation of similar sized plants (U.S. 

Department of Energy, 2016). Plant costs also exceed those in engineering reports: our modelled 

costs are 15% higher for a 1 MWe plant and 8% for a 5 MWe plant. We include financing costs 

with a 25% investment in installation costs with the remaining 75% amortized at 8.5% over a 12-

year loan, both of which are higher than typical market rates. The fixed cost of the ammonia 

processor is $350,000, though only one has ever been built and includes costs of natural gas 

installations which includes costs of a feeding system and gas turbine. The financing structure of 

the ammonia processor follows that of the power plant. We also report the internal rate of return 

of a fully financed investment. Overall, our costs are higher and returns lower than most 

engineering reports.  
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Figure 1: Decision process to allocate CGW 

Distribution of Expected Annual Total Cotton 

Gin Waste (delivered to gin) 
 

 
 

Average Electricity Prices by Month 

(nine months, mean and standard deviation) 
  

 
 

First Month Electricity Production (𝐸𝑖) 

(based on Total CGW, Observed Price (𝑂𝑏𝑠. 𝑃𝑖), and Expected Monthly Prices (𝜇𝑝𝑖))  
 

 

 
 

Second Month Choice of Electricity Produced 

(based on CGW − 𝑐𝑔𝑤𝑡−1, Observed Price (𝑂𝑏𝑠. 𝑃𝑖), and Expected Monthly Prices (𝜇𝑝𝑖))  
 

 

 

Total CGW 
Price Observed 

CGW 
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6.1 Simulation Methods – Sources of Uncertainty  

We conduct profitability analyses on 10,000 simulated annual decisions. This requires use of 

existing data to simulate distributions of CGW and of 27 different electricity prices.  

Cotton Gin Waste: To simulate the distribution of annual cotton gin waste, a regression 

of CGW against precipitation and its square is estimated by a Gibbs sampling of the model:  

𝐶𝐺𝑊 = 𝛽0 + 𝛽1𝑃𝑃𝑇 + 𝛽2𝑃𝑃𝑇2 + ϵ  (10) 

where CGW is annual production of cotton gin waste in tons, PPT is annual precipitation in cm, 

and 𝛽0, 𝛽1 and 𝛽2 are the regression coefficients to be estimated.  

To estimate a posterior distribution for the coefficients (𝛽) and the error variance (𝜎2), we 

specify the number of model iterations (11,000 herein), of which 1,000 are used to burn-in the 

sample and then discarded. Each iteration alternates between sample draws for the two beta 

coefficients and the error variance. The ‘betas’ are sampled from a multivariate normal distribution, 

using the covariance matrix and mean parameters. ‘Sigma’ values are drawn from an inverse 

gamma distribution as this allows great flexibility in the shape of the CGW distribution. Each 

sampling draw is stored; and the corresponding value of CGW (10,000 in all) is assigned from 

these sampled coefficients (Lacombe, 2022). We employ the same Gibbs sampling regression for 

each of three seasons of anhydrous ammonia.  

Electricity Prices: Electricity price distributions are based on over 105,000 observations 

of hourly electricity prices, which sort into more than 3,600 observations for peak prices for every 

month, more than 5,000 subpeak prices for each of nine months and 2,900 observations of base 

prices for each of nine months. To simulate distributions, we randomly draw 10,000 times from 

these data for each electricity price category (peak, subpeak, and base) in each month. This 

generates 27 electricity price distributions, each with 10,000 draws based on 105,000 direct 

observations of hourly electricity prices.  

So, simulations are reports from 10,000 random draws of annual cotton gin trash, and 

10,000 draws of peak, subpeak, and base electricity prices for each month (December-September).  

When adding ammonia processing, three seasonal anhydrous ammonia price distributions 

are added. The ammonia simulation model is derived from Ibendahl (2021) and Schnitky (2021) 
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in which demand is determined by the price of corn and a lagged oil price. Our formal regression 

model uses price of major crops including corn, cotton, and oats, their squared prices, and nine-

month lagged oil price. Table 1 in the Appendix presents the summary statistics of the observed 

and simulated values. 

6.2 Distributions  

Panel A, Figure 2 presents a distribution of draws of annual CGW against cotton prices and annual 

rainfall by the Gibbs sampled Bayesian regressors, described above. The flexibility of the 

simulation process is represented in the triple peaked distribution of CGW, which closely matches 

the variable weather in the study area.  

Panels B, C, D show distributions of hourly electricity prices for every hour over nine 

months for 12 years, sorted by Peak (4-7 hours/day), Subpeak (8-14 hours/day), or Base (10 

hours/day) electricity prices. The distributions reflect a secular trend of increasing peak prices, 

frequently exceeding $100/MWe and higher base prices for off peak hours, well above the $25-

$30 fifteen years earlier (Wu, 2010). For profitability analysis, we extract 10,000 draws of these 

27 prices to solve a revenue maximization problem that allocates annual CGW according to Figure 

1 above.  

7. Risk-Returns  

Simulations address two sized gins. The CGW represented in Figure 2: Panel A. is based on a 

known record of CGW from Ropes Gin. The medium sized gin is premised on Plains Cotton 

Growers, a local coop gin with total revenues close to three times those of Ropes – in the same 

area. Plains Cotton Growers Coop in fact reports an overall average gin size of 28,000 tons of gin 

waste, close to 2.9 times the size of Ropes Gin. The distributions of all are identically scaled to 

Figure 2: Panel A.  

We evaluate investment success through several financial benchmarks. First, simulations 

provide 10,000 simulated annual profit or loss outcomes for a power plant of a given size at a given 

sized gin. That variation also generates a standard deviation from the expected annual profit. 

Return on Invested Capital (ROIC) tracks two scenarios where an investor makes a 25% 

downpayment and borrows the rest; and a 100% self-financed.  
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Figure 2: Distribution of simulated and observed CGW and electricity prices 

Panel A: Distribution of Gin Trash 

 

Minimum:  3,342 

Median:  9,763 

Mean:  10,752 

St. Dev.:  3,662 

Maximum:  21,093 
 

Panel B: Distribution of Peak Electricity 

 

Minimum:  -407.02 

Median:  72.49 

Mean:  184.91 

St. Dev.:  849.82 

Maximum:  23,259.35 
 

 

Panel C: Distribution of Sub-Peak Electricity 

 

Minimum:  4.14 

Median:  44.30 

Mean:  52.35 

St. Dev.:  56.35 

Maximum:  3,910.65 
 

 

Panel D: Distribution of Base Electricity 

 

Minimum -2.04 

Median 42.05 

Mean 48.41 

St. Dev.  53.04 

Maximum 3,152.99 
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Note: Top and bottom 5% of the distributions truncated for better scaling on the axes (except gin trash); 

grey bars represent observed values and red density plots represent simulated values).  

The average returns over 10,000 simulations compared to the cash investment drives the 

ROIC percentages. These are converted to annual returns on invested capital rather than the entire 

12-year life of the plant. In addition, over the 12-year life of the plant, we report the probability 

that the investment shows an overall loss; and report the probability of a 100% return or greater 

on invested capital (annualized).  

7.1 Small Gin Options  

Table 1 summarizes results for bioproducts produced at a small gin. Presented are two types of 

plants: electric power only or with ammonia processors. Profit is represented as cash flow - all 

revenue from electric power minus operating costs; and estimated returns to a small gin are 

reported on Table 1. As shown in Table 1, plants where 25% of the installation costs ($321,000 

and $590,000) are self financed and the remainder borrowed ($0.963 million and $1.770 million). 

Financing of course lowers average annual cash flow and elevates annual returns on invested 

capital (ROIC).  

Both the 1 MWe and 2 MWe plants appear very attractive. In an average year, the 1 MWe 

plant is expected to return 58.8% of initial invested capital, and a 2 MWe plant to return 51.2% of 

invested capital. Yet the very high standard deviation around annual cash flows is worthy of note. 

The key source of variability in annual cash returns is the variation in the quantity of gin 

trash; but the ratio of standard deviation to average annual returns is due to principal and interest 

financing payments and the annual fixed labor costs we added for first time investors. This is why 

we present outcomes as cash flows to highlight this concern.  

Real average profits of the 1 MWe plant has to add back the $80,000 average annual 

principal outlays; and for the 2 MWe plant add back $130,000 average principal payments. These 

returns are very high even with added annual fixed labor costs of $75,000 for new investors. Even 

with intermittent cash flow concerns, the chance of negative cash flow over the entire 12-year 

period is only 5.6% for a 1 MWe plant and 9.6% for a 2 MWe plant, each with very high expected 

returns on invested capital. If we consider self-financed options, the more conventional internal 

rate of return is 22.2% annually for the 1 MWe plant and 18.0% annually for the 2 MWe plant.  
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Table 1: Analyses for small gin  

Models 
Avg. 

ROIC (%) 

Prob. 

Loss (%) 

Prob. ROIC 

> 100% 

Avg. annual 

profit  

(Cash Flow, $) 

S.D. profit 

(Cash Flow, $) 

C=0, M=0 EV* 0.00 0.00 0.00 107,516 36,626 

C=1, M=0 EV 58.83 5.60 12.99  189,011   284,846  

C=2, M=0 EV 51.25 9.50 11.04  294,700   494,065  

C=3, M=0 29.51 30.39 6.17  238,519   602,822  

C=1, M=1 40.73 9.06 8.94  166,505   284,887  

C=2, M=1 41.86 12.05 8.72  277,330   493,492  

C=3, M=1 24.21 35.52 5.22  216,900   600,695  

C=1, M=2 25.96 22.46 7.11  128,860   284,887  

C=2, M=2 32.40 17.38 6.87  242,992   493,718  

C=3, M=2 18.93 42.23 4.27  186,189   602,075  

* C = installed power capacity in MWe; M = number of ammonia plants (550 tons/plant); when C = 0 and 

M = 0, all CGW is sold as feed at $10/ton; for each incremental increase in C, installed power capacity 

increases by 1 MWe, and for each incremental increase in M, installed ammonia capacity increases by 550 

tons; EV = models on the Efficient Frontier; ROIC is calculated by dividing net profit [revenue – (marginal 

cost + fixed cost)] by invested capital [debt + equity]; Prob. Loss represents the number of simulations (out 

of 10,000) where net profit is less than 0; Prob. ROIC > 100% refers to the number of simulations (out of 

10,000) where ROIC exceeds 100%; all results are based on 10,000 simulations; full results in Appendix 

Tables 2 and 3; output combination in Appendix Table 10.  

Figure 3, Panel A graphs the outcomes of Table 1 labelled EV: the set of second order 

stochastic dominant investments for the 1 MWe plant for a small gin. The do-nothing option is 

always on the frontier as it presents virtually no risk for the expected revenues of CGW sales as 

cattle feed. This Frontier is slightly bowed right given the cash flow risks from fixed expenses that 

advantage the 2 MWe plant investment. Nonetheless, all are stochastically dominant. Only the risk 

preference of an investor can choose among these options.  

7.2 Medium Size Gin Options  

The medium-sized gin is modelled as three times the size of the small gin, processing 29,000 tons 

in an average year.2 Results continue to reflect a 25% investment with a 75% loan. Table 2 shows 

modest increasing scale returns. First, greater size reduces the cost per MWe of quasi-fixed labor 

 
2 The medium-sized gin is modelled as 3x larger than the small-sized gin: 9,700 tons vs. 29,000 tons on average.  
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of $75,000; yet it is the declining average cost in plant construction that contributes most to scale 

economies.3 This is clearly evident comparing Table 2 to Table 1.  

Figure 3: EV Frontier  

Panel A: Small gin EV Frontier 

 

Panel B: Medium gin EV Frontier 

 

The standard deviation (s.d.) represents the s.d. of net profit across 10,000 simulation runs, with each 

iteration using different input values generated through Bayesian regressions. The mean profit is plotted on 

the y-axis, and the standard deviation of profit is plotted on the x-axis.  

75% financing of a medium gin returns an average annual return of more than 90% of the 

invested capital; and this return on invested capital continues at every scale up to the 5 MWe plant 

for a medium gin. Conversely, in a fully financed power plant, the internal rates of return (IRR) of 

installing a 1 MWe, 2 MWe, and 4 MWe are 41%, 37%, and 36% respectively.  

The EV Frontier on Panel B, Figure 3 shows considerable flexibility for an investor. A gin 

this size choosing to install a boiler-steam turbine power plant faces a very low probability of loss. 

The simulated probability of loss over 12 years is less than one percent up to a 3 MWe installation. 

Not until installation reaches a 5 MWe scale is the probability of loss nearly equal to the probability 

of loss to the 1 MWe plant at a small gin.  

 
3 Installation costs herein commence at $1.285 million/MWe for a 1 MWe plan - well above engineering reports of $1 

million. Modelled costs of $1.010 million/MWe for a 4 MWe plant is still 12% higher than reports of $0.9 million/MWe 

at this scale. At the 6 MWe scale - the largest plant on the EV frontier, our costs ($0.921/MWe) compares to $0.850-

0.900 million/MWe in engineering reports. Finally, our lowest cost plant of $0.865 million/MWe for a 9 MWe plant 

finally falls close to engineering reports (U.S. Department of Energy, 2016; Frontiers, 2021).  
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What provides security to a risk averse manager of a medium gin is volume of cotton gin 

waste. On average, the gin with a smaller power plant can cover the hours of peaking electricity 

prices across the early months during ginning. The smaller plant at a medium sized gin can offset 

some loss of a low harvest year by selling all gin trash at very high peaking prices. A small gin 

with the same size plant will have greater exposure to years in which they exhaust CGW before 

they satisfy winter peaking power.  

Table 2: Analyses for medium gin  

Models 
Avg. 

ROIC (%) 

Prob. 

Loss (%) 

Prob. ROIC 

> 100% 

Avg. annual 

profit  

(Cash Flow, $) 

S.D. profit 

(Cash Flow, $) 

C=0, M=0 EV, * 0.00 0.00 0.00 322,549 109,878 

C=1, M=0 EV 108.79 0.01 37.39 349,517 297,249 

C=2, M=0 EV 98.96 0.02 23.52 569,104 577,942 

C=3, M=0 EV 95.41 0.54 21.83 771,254 854,539 

C=4, M=0 EV 96.01 3.09 22.16 986,196 1,140,497 

C=5, M=0 EV 92.91 4.90 21.21 1,152,070 1,391,770 

C=6, M=0 EV 80.56 5.81 17.35 1,162,195 1,482,193 

C=7, M=0 68.44 6.59 13.75 1,122,302 1,592,251 

* C = installed power capacity in MWe; M = number of ammonia plants (550 tons/plant); when C = 0 and 

M = 0, all CGW is sold as feed at $10/ton; for each incremental increase in C, installed power capacity 

increases by 1 MWe, and for each incremental increase in M, installed ammonia capacity increases by 550 

tons; EV = models on the Efficient Frontier; ROIC is calculated by dividing net profit [revenue – (marginal 

cost + fixed cost)] by invested capital [debt + equity]; Prob. Loss represents the number of simulations (out 

of 10,000) where net profit is less than 0; Prob. ROIC > 100% refers to the number of simulations (out of 

10,000) where ROIC exceeds 100%; all results are based on 10,000 simulations; full results in Appendix 

Tables 4 and 5 and output combination in Appendix Table 12.  

Investors in the medium sized plant can secure very high returns coupled – an elevated 

ROIC – with very modest risk. Conversely, an investor with a higher risk tolerance and a strong 

cash position can support, say, a 5 MWe plant with very high returns over time. The EV Frontiers 

on Figure 3 illustrate that investors of different risk preferences and different cash positions can 

fashion their investment choice to their own needs, rather than face a take-it-or-leave-it option of 

a singular ‘optimal’ scaled system.  

7.3 Sensitivity Analyses  



21 

 

Though we elevate installation costs by 5-20% across plant options, use somewhat low 

conversion efficiency (25% rather than 28%), and increase labor commitments, simulations still 

show strong returns and modest risk, especially for larger sized gins. We summarize sensitivity 

analyses below. The appendix details even more conservative results. Sensitivity analyses for the 

small gin are recorded on Tables 6 and 7; results for the medium gin are presented on Tables 8 and 

9; and combined outputs using an ammonia plant are recorded om Tables 11 and 13.  

Lower base electricity price  

As a first sensitivity analysis, we lower base electricity prices from the $48/MWe we found 

in the 12-year record to $25/Mwe, which is more in line with historical base prices. Critically, the 

EV Frontier is slightly lower although optimal plant capacity does not change.  

Though we have not found the addition of an ammonia plant more profitable than electric 

power only, a drop on base prices would encourage diversion of power from electricity sold to a 

local utility to ammonia production via electrolysis during nonpeak hours If a small gin installed 

C=1 and M=1 (not on the Frontier), electric power sold would decrease from 3,771 MWh to 3,314 

MWe as ammonia production rose from 138 tons to 179 tons. The medium gin realizes a similar 

pattern.  

Lower marginal cost of ammonia plant  

The chief reason ammonia production is currently unprofitable is the high price of 

electricity sold to power utilities and the very high marginal cost of production of ammonia due to 

safety concerns. If we lower the marginal cost of ammonia production by 34.8% - from 

$130.34/ton to $85/ton - this drop in marginal cost does not alter optimal plant composition; plants 

with no complementary ammonia processor remain a little more profitable.  

If policy seeking to reduce the size of ammonia plants for safety concerns, subsidized an 

ammonia processor by 10%, adding this marginal cost reduction would almost match the EV 

Frontiers presented. The effect would decrease the amount of electricity sold, especially base price 

markets, and divert power generation to ammonia output. What this simulation does show is that 

electrolysis-based products, such as hydrogen fuel, can be produced in the future as technology 

makes these systems more efficient. These are easily ‘located’ onto an existing power plant.  
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Lower conversion rate  

We now reduce the conversion rate efficiency of CGW into electricity. We initially 

employed a conversion rate 25%, which is only slightly below current 28% efficiencies reported 

for a modern boiler. If conversion efficiency falls to 18% from suboptimal operation and 

maintenance, the benchmark 2 MWe plant at the small gin is still the plant size with the highest 

expected profit for the small gin; but 12-year cumulative cash flow falls by 72%.  

The same conversion efficiency drop for the medium gin reduces 12-year cumulative profit 

of a 5 MWe plant by 53%. The operational adjustment of lower efficiency is to almost eliminate 

holding any CGW to summer months, selling CGW as cattle feed in March instead.  

Higher electricity prices  

As a final sensitivity analysis, we increase all electricity prices by 10%. For each sized gin, 

this increase does not change the optimal plant composition, nor the timing of electricity sold over 

the seasons. Of course, IRR and ROIC increase with increasing electricity prices.  

The next step is a formal operational assessment by a power evaluator. Even with the advice 

of engineers, implementation involves multiple licenses, and process plans that match to rigid 

design and operation standards. While many dual biomass processors with biopower operations 

have been licensed, each is different. The final plant will differ from this in some fashion. Our 

conservative orientation here suggests the evaluation is warranted and shows enough residual 

profits to realize a reliable second value stream for independent and co-op gins.  

8. Conclusion  

This work illustrates profitable pathways to develop bioelectricity plants at rural food and fiber 

processing centers using biowaste feedstocks. First, the power plant uses existing technology. 

Operation of a chemical boiler to generate heat to power a steam turbine has been used for more 

than 130 years; and the technology has improved continuously over that period. As a secondary 

benefit, this system can be upgraded as more efficient gasification or pyrolysis technologies 

become commercially available. The system can also adapt to new electrolysis-based products if 

a hydrogen-based economy evolves. The investment options are also highly profitable under 

conservative parameters. Compared to existing engineering studies, these analyses overstate the 
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costs of plant installation, abbreviate the useful life of a plant to replacement, and elevate the 

operational costs to manage the plant. 

A central benefit of this work is to demonstrate that investment choices are highly flexible. 

The scale of investment, forms of financing, and level of leveraging exposure support very 

different levels of investment. Critical to this work is that we presented a structure method to allow 

more flexibility in bioenergy production and investment. By presenting a realistic risk-return (EV) 

Frontier, investors make informed risk-return choices on their own without facing a narrow set of 

researcher or policy-maker presented optimal investments. This flexibility we assert is central to 

elevate adoption of alternative energy sources.  

This flexible presentation emerges from the manner of economic estimation itself. As 

bioenergy has often been dominated by technical advances, applied at utility scale to accelerate 

conversion, the presentations may not resolve the question of real investors. The presentation of 

average prices and average conditions for bio-feedstocks, and often little more, presents 

investments that may fit only a few investors; and pressure public entities to subsidize investments 

that, under more flexible condition, are profitable for investors in current markets.  

Unique to this study, risk and uncertainty are analyzed and communicated by the 

simultaneous variation electricity prices (varying peak, subpeak prices and base prices), variation 

in feedstock availability due to variation in rainfall, heat, and commodity prices themselves. Risk 

presentation is supplemented by specific sensitivity analyses, such as the biomass conversion 

efficiency. Though policy makers seek continuous provision, the marginal investor also may need 

to optimize the timing of power output across a day and across seasons. Communicating risk is 

also important.  

This return-variance information is also presented graphically in the form of a frontier of 

these stochastic dominant outcomes, or an EV-Frontier mapped onto expected returns and variance 

axes. All of this assists the investor (gin, cooperative, or independent investor) match their risk 

tolerance against each separate investment level. We have not seen this in the extensive bioenergy 

literature.  

Two final advantages include the direct environmental benefits of managing and processing 

CGW to avoid long-term problems. CGW starts to release arsenic and attract beetles that carry 
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diseases after long periods. With nearly all gin waste processed during winter ginning and only a 

small volume held over in exceptional years for summer combustion, these local environmental 

risks are virtually eliminated.  

Secondly, this diversification contributes to the economic viability of rural industry while 

also easing some of the most dangerous periods of power supply shortage. This process also allows 

other products to be made, from ammonia fertilizer to hydrogen fuels from electrolysis. A rural 

power plant may be an attractive bolt-on technology contributing to viable rural economies, 

especially as electricity demand is projected to increase as more electric vehicles are deployed. 

The possibility for a multi-product biorefinery may be more open to smaller operations, outfitted 

with more versatile uses than large, complex single use systems such as a combined cycle power 

plant.  

Finally, bioenergy literature itself may need a more holistic perspective. To assess this 

resource use process as a bioenergy project misses the multifaceted benefits to resilient rural 

economic development. The energy and climate challenge clearly will require some large single 

purpose operations. Yet such a large complex, comprehensive conversion of an economy will need 

to be buttressed by numerous, small retrofitted multi-use systems such as those suggested here. 

These programs require a different analytic approach. Similarly, rural development and 

agricultural economic analyses should not ignore energy and climate impacts. When a credible 

opportunity for meaningful overlap does appear, we risk obsolescence of single purpose 

investment and policy analysis.  
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Appendix A  

The optimization model for the plant operator and processor solves for the operator choices of 

electricity generation capacity, the amount of biomass available and expected prices of electricity 

and ammonia. Expected profit is defined below as:  

𝑀𝐴𝑋 𝑃𝑝𝐸𝑝 + 𝑃𝑈𝐵𝐸𝑈𝐵 + 𝑃𝐿𝐵𝐸𝐿𝐵 + 𝑃𝑀𝑀 − 5.5(𝐸𝑝 + 𝐸𝑈𝐵 + 𝐸𝐿𝐵 + 𝐸𝑀) − 130.34 ∗ 𝑀 − 37645 ∗ 𝑀𝐸 −

0.100385 ∗ [640000 +
4000000

1.2∗𝐶+5
] ∗ 𝐶 − 𝐹𝐶 + 10 ∗ 𝐺𝑊𝑓       (1) 

• 𝑃𝑝 is peak electricity price; 𝐸𝑝 is the MWe of electricity sold each month at peak prices; 

• 𝑃𝑈𝐵 is sub peak electricity price; 𝐸𝑈𝐵 is the MWe of electricity sold each month at subpeak 

prices;  

• 𝑃𝐿𝐵 is the price of base electricity; 𝐸𝐿𝐵 is the MWe of electricity each month at base prices;  

• 𝑃𝑀 is the price of ammonia, M, per ton; 𝐸𝑀 is electricity in MWe required to produce a ton 

of M (11 MWe is needed to produce every ton of ammonia, M);  

• 𝑀𝐸 is the number of ammonia processors, which ranges from 0 to 2; 

• 𝐶 is installed power capacity, which ranges from 1-5 MWe for the small gin and 1-9 MWe 

for medium gins;  

• 𝐹𝐶 is the annual labor cost, fixed at $75,000;  

• 𝐺𝑊𝑓 is gin waste, in tons, sold as cattle feed;  

Equation (1) can be rewritten as: 

𝑀𝐴𝑋 𝑃𝑝𝐸𝑝 + 𝑃𝑈𝐵𝐸𝑈𝐵 + 𝑃𝐿𝐵𝐸𝐿𝐵 + 𝑃𝑀
𝐸𝑀

11
+ 10 ∗ 𝐺𝑊𝑓 − 5.5(𝐸𝑝 + 𝐸𝑈𝐵 + 𝐸𝐿𝐵 + 𝐸𝑀) − 130.34 ∗

𝐸𝑀

11
 −

0.100385 ∗ [640000 +
4000000

1.2∗𝐶+5
] ∗ 𝐶 − 𝐹𝐶 − 37645 ∗ 𝑀𝐸4     (2) 

Subject to: 

(𝐸𝑝 + 𝐸𝑈𝐵 + 𝐸𝐿𝐵 + 𝐸𝑀 + 𝐺𝑊𝑓) ≤ CGW        (3) 

(𝐸𝑝 + 𝐸𝑈𝐵 + 𝐸𝐿𝐵 + 𝐸𝑀) ≤ 5403*C        (4) 

0 ≤ 𝐸𝑃 ≤ 1072           (5) 

0 ≤  𝐸𝑈𝐵 ≤ 2426          (6) 

 
4 Revenue [𝑃𝑝𝐸𝑝 + 𝑃𝑈𝐵𝐸𝑈𝐵 + 𝑃𝐿𝐵𝐸𝐿𝐵 + 𝑃𝑀

𝐸𝑀

11
+ 10 ∗ 𝐺𝑊𝑓] – Marginal Costs [5.5(𝐸𝑝 + 𝐸𝑈𝐵 + 𝐸𝐿𝐵 + 𝐸𝑀) +

130.34 ∗
𝐸𝑀

11
] – Fixed Costs [0.100385 ∗ [640000 +

4000000

1.2∗𝐶+5
] ∗ 𝐶 + 𝐹𝐶 + 37645 ∗ 𝑀𝐸] 
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0 ≤  𝐸𝐿𝐵 ≤ 1905          (7) 

0 ≤ 𝑀𝐸 ≤ 550           (8) 

0 ≤ 𝐸𝑀 ≤ 6050          (9) 

In equation (2), 0.100385 ∗ [640000 +
4000000

1.2∗𝐶+5
] ∗ 𝐶 is the fixed cost function of the 

gasifier/generator and gives an average (amortized) fixed cost as a function of capacity C (see 

Multer et al., 2010); 37645 ∗ 𝑀𝐸 is the (amortized) fixed cost for ammonia processor and gives 

an average fixed cost as a function of number of processors (ME) each with fixed capacity of 550 

tons/year. Ammonia production in particular is given very high marginal production costs 

($130.34/ton) because of the potential risks involved. Limited information from boilers at paper 

mills suggests low marginal costs to generate electric power ($5.5/MWe) as paper mills, in time, 

integrated power generation more seamlessly into operations (see Farmer et al., 2014). Finally, FC 

is the annual labor cost fixed at $75,000 for both small and medium gin, though the operator is not 

committed all year.5 While profits change as marginal costs change, in general for an asset 

composition mix, the volume of products sold to ammonia, peak power, subpeak power and base 

power change very little over the ranges of marginal costs simulated.  

Installed capacity is fixed. Equation (3) is the efficiency constraint, stating that 1 ton of 

CGW produces approximately 1 MWe of electricity at 25% efficiency (see Farmer et al., 2014). 

Total electricity power output is constrained by total CGW in tons less gin waste sold as feed. 

𝐺𝑊𝑓; equation (4) restricts the maximum hours of operations to 5,403 hours over nine months, 

reflecting the possible hours of operation. Equations (5) to (7) account for electricity sold at peak 

prices, sub peak and base prices respectively for specific hours of the day for each. (The breakdown 

of the total annual hours of operation is provided in Appendix Table 14.) Equation (8) constrains 

 
5 For the labor cost assumptions, such as the $75,000 figure used for the professional staff, we based these on our 

knowledge of typical compensation levels for this type of work. As mentioned, we know that professionals in this 

field (Power Plant Operators) in Texas earn a median income of around $90,000 per year. Given this is a new 

application of the technology, we took a conservative approach and assumed the need for a dedicated manager to 

oversee operations for at least the first 12 years. This full-time or near-full-time staffing requirement contributed to 

the $75,000 per year estimate for labor costs. Our intent with these assumptions was to err on the side of caution, as 

this would be the first time implementing this technology. We wanted to account for the additional management and 

oversight that may be required during the initial deployment phase, even if these labor costs could potentially be lower 

in the long run as the operations become more established.  
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ammonia production to 550 tons in nine months, which is equivalent to 6,050 MWe dedicated to 

its production (equation (9)), since 11 MWe is required for every ton of ammonia.  

The sum of the RHS of equations (5) to (7) equals total electricity production in (4) 

allocated to peak, sub-peak, base electricity, and ammonia production.  
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Appendix B  

Table 1: Summary statistics 

 Obs. Median Mean Min Max St. Dev. 

Peak price 

(observed) 
10,757 78.39 197.24 15.59 23,224.67 776.05 

Peak price 

(simulated) 
80,000 72.48 184.91 -407.02 23,259.35 849.82 

Sub-peak price 

(observed) 
25,099 46.85 56.68 6.60 3,884.34 61.44 

Sub-peak price 

(simulated) 
100,000 44.29 52.35 4.14 3,910.65 56.35 

Base price 

(observed) 
19,039 41.04 47.71 -0.86 3,119.24 51.47 

Base price 

(simulated) 
100,000 42.05 48.41 -2.04 3,152.99 53.04 

Ammonia price 

(observed) 
75 537.0 562.1 413.0 750.0 95.39 

Ammonia price 

(simulated) 
30,000 507.4 536.1 358.7 808.8 88.92 

Small CGW 

(observed) 
15 8,740 9,704 3,442 14,988 3,312.44 

Small CGW 

(simulated) 
10,000 9,763 10,752 3,342 21,093 3,662.59 

Medium CGW 

(observed) 
15 26,221 29,113 10,326 44,964 9,937.32 

Medium CGW 

(simulated) 
10,000 29,290 32,255 10,025 63,278 10,987.79 

* Peak price data shows cumulative data from eight months, sub-peak and base from 10 months 

and ammonia price from three seasons (winter, spring, summer).  
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Table 2: Baseline analyses for small gin 

Models 
Avg. ROIC 

(%) 

Prob. 

Loss (%) 

Prob. ROIC 

> 100% 

Avg. annual 

profit  

(Cash Flow, $) 

S.D. profit 

(Cash Flow, $) 

C=0, M=0 EV* 0.00 0.00 0.00 107,516 36,626 

C=1, M=0 EV 58.83 5.60 12.99  189,011   284,846  

C=2, M=0 EV 51.25 9.50 11.04  294,700   494,065  

C=3, M=0 29.51 30.39 6.17  238,519   602,822  

C=4, M=0 9.28 50.01 2.09  95,302   523,131  

C=5, M=0 0.59 62.83 1.40  7,289   594,257  

C=1, M=1 40.73 9.06 8.94  166,505   284,887  

C=2, M=1 41.86 12.05 8.72  277,330   493,492  

C=3, M=1 24.21 35.52 5.22  216,900   600,695  

C=4, M=1 6.44 53.75 1.69  71,800   524,745  

C=5, M=1 -1.41 65.35 1.21  -18,692  595,214  

C=1, M=2 25.96 22.46 7.11  128,860   284,887  

C=2, M=2 32.40 17.38 6.87  242,992   493,718  

C=3, M=2 18.93 42.23 4.27  186,189   602,075  

C=4, M=2 3.40 57.57 1.46  40,922   525,505  

C=5, M=2 -3.49 68.79 1.10  -49,316  595,749  

*C = 0, M = 0 where all gin trash sold at $10/ton; a = 10,000 simulations for each combination; 

EV = Models on EV frontier  
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Table 3: Extended analyses for small gin 

Models 

Disc. Avg. 

profit 12 

yrs. 

SD disc. 

profit 12 

yrs. 

Disc. 

Avg. 

ROIC 12 

yrs. 

Prob. 

ROIC < 

0 

Prob. 

ROIC 

between 0 

& 250 

Prob. 

ROIC 

between 

250 & 500 

Prob. 

ROIC > 

500 

C=0, M=0 EV* 484,920 44,933 0.00 0.00 0.00 0.00 0.00 

C=1, M=0 EV  852,478   366,294  265.33 0.00 52.58 43.46 3.96 

C=2, M=0 EV  1,329,158   632,613  231.13 0.00 65.19 32.17 2.64 

C=3, M=0  1,075,770   765,202  133.08 0.12 88.36 10.92 0.60 

C=4, M=0  429,830   652,641  41.85 21.61 76.71 1.68 0.00 

C=5, M=0  32,875   742,402  2.65 62.30 36.37 1.32 0.00 

C=1, M=1  750,972   366,107  183.71 0.00 78.99 20.53 0.48 

C=2, M=1  1,250,814   630,693  188.78 0.00 76.95 22.09 0.96 

C=3, M=1  978,265   762,912  109.20 1.44 91.72 6.48 0.36 

C=4, M=1  323,831   654,115  29.05 30.73 67.95 1.32 0.00 

C=5, M=1  -84,305  743,722  -6.35 71.07 27.85 1.08 0.00 

C=1, M=2  581,185   366,107  117.11 0.00 94.12 5.88 0.00 

C=2, M=2  1,095,942   630,828  146.11 0.00 88.12 11.76 0.12 

C=3, M=2  839,751   764,295  85.39 6.12 89.44 4.44 0.00 

C=4, M=2  184,566   654,875  15.35 45.74 53.18 1.08 0.00 

C=5, M=2  -222,425  744,538  -15.72 79.71 19.33 0.96 0.00 

* C = 0, M = 0; all gin trash sold at $10/ton 

EV = Models on EV frontier 
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Table 4: Baseline analyses for medium gin 

Models 

Avg. 

ROIC 

(%) 

Prob. 

Loss 

(%) 

Prob. ROIC 

> 100% 

Avg. annual 

profit  

(Cash Flow, $) 

S.D. profit 

(Cash Flow, $) 

C=0, M=0 EV, * 0.00 0.00 0.00 322,549 109,878 

C=1, M=0 EV 108.79 0.02 37.39 349,517 297,249 

C=2, M=0 EV 98.96 0.01 23.52 569,104 577,942 

C=3, M=0 EV 95.41 0.54 21.83 771,254 854,539 

C=4, M=0 EV 96.01 3.09 22.16 986,196 1,140,497 

C=5, M=0 EV 92.91 4.90 21.21 1,152,070 1,391,770 

C=6, M=0 EV 80.56 5.81 17.35 1,162,195 1,482,193 

C=7, M=0 68.44 6.59 13.75 1,122,302 1,592,251 

C=8, M=0 60.41 7.51 12.16 1,108,041 1,731,743 

C=9, M=0 52.17 9.14 10.25 1,057,049 1,808,466 

C=1, M=1 80.12 0.10 17.57 327,514 296,984 

C=2, M=1 84.27 0.01 18.11 558,336 577,545 

C=3, M=1 85.37 0.83 18.37 764,793 854,580 

C=4, M=1 88.00 3.70 19.39 980,860 1,139,546 

C=5, M=1 86.31 5.32 18.98 1,145,799 1,392,416 

C=6, M=1 75.27 5.99 15.79 1,151,806 1,479,441 

C=7, M=1 64.27 6.72 12.74 1,110,122 1,592,734 

C=8, M=1 56.86 7.80 11.24 1,092,579 1,733,801 

C=9, M=1 49.04 9.78 9.44 1,036,498 1,800,740 

C=1, M=2 58.41 1.42 10.77 289,869 296,984 

C=2, M=2 69.99 0.09 14.23 524,940 577,435 

C=3, M=2 75.23 1.62 15.78 739,788 854,714 

C=4, M=2 79.93 4.46 17.17 960,895 1,139,982 

C=5, M=2 79.78 5.58 17.03 1,128,895 1,393,265 

C=6, M=2 70.16 6.14 14.3 1,134,904 1,479,485 

C=7, M=2 60.23 6.89 11.65 1,092,982 1,593,145 

C=8, M=2 53.56 8.2 10.32 1,076,046 1,737,079 

C=9, M=2 46.20 10.61 8.84 1,017,042 1,799,914 

* C = 0, M = 0; all gin trash sold at $10/ton 

EV = Models on EV frontier 
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Table 5: Extended analyses for medium gin 

Models 

Disc. Avg. 

profit 12 

yrs. 

SD disc. 

profit 12 

yrs. 

Disc. 

Avg. 

ROIC 12 

yrs. 

Prob. 

ROIC 

< 0 

Prob. 

ROIC 

between 

0 & 250 

Prob. 

ROIC 

between 

250 & 500 

Prob. 

ROIC > 

500 

C=0, M=0 EV, * 1,454,760 134,800 0.00 0.00 0.00 0.00 0.00 

C=1, M=0 EV 1,576,391 377,960 490.64 0.00 0.00 59.30 40.70 

C=2, M=0 EV 2,566,774 741,181 446.35 0.00 0.24 70.11 29.65 

C=3, M=0 EV 3,478,513 1,098,908 430.31 0.00 2.28 70.83 26.89 

C=4, M=0 EV 4,447,943 1,473,180 433.03 0.00 3.84 68.31 27.85 

C=5, M=0 EV 5,196,070 1,813,341 419.03 0.00 7.20 67.23 25.57 

C=6, M=0 EV 5,241,735 1,898,068 363.33 0.00 18.25 65.79 15.97 

C=7, M=0 5,061,813 2,040,941 308.69 0.00 39.26 52.22 8.52 

C=8, M=0 4,997,490 2,229,814 272.48 0.00 54.98 39.02 6.00 

C=9, M=0 4,767,505 2,295,739 235.29 0.00 65.91 30.49 3.60 

C=1, M=1 1,477,155 377,352 361.35 0.00 7.68 83.55 8.76 

C=2, M=1 2,518,207 740,212 380.07 0.00 6.60 79.11 14.29 

C=3, M=1 3,449,370 1,098,474 385.03 0.00 9.84 72.99 17.17 

C=4, M=1 4,423,879 1,474,828 396.88 0.00 9.24 70.35 20.41 

C=5, M=1 5,167,785 1,814,727 389.28 0.00 12.61 67.71 19.69 

C=6, M=1 5,194,881 1,891,555 339.50 0.00 25.45 63.15 11.40 

C=7, M=1 5,006,879 2,040,355 289.87 0.00 47.30 46.34 6.36 

C=8, M=1 4,927,753 2,229,297 256.44 0.00 59.78 35.65 4.56 

C=9, M=1 4,674,819 2,284,637 221.17 0.00 71.31 26.17 2.52 

C=1, M=2 1,307,368 377,343 263.43 0.00 50.30 49.10 0.60 

C=2, M=2 2,367,584 740,046 315.65 0.00 31.09 63.39 5.52 

C=3, M=2 3,336,594 1,098,318 339.30 0.00 23.17 67.23 9.60 

C=4, M=2 4,333,833 1,474,939 360.51 0.00 19.33 67.35 13.33 

C=5, M=2 5,091,545 1,814,649 359.82 0.00 20.77 64.59 14.65 

C=6, M=2 5,118,650 1,891,890 316.42 0.00 35.05 57.02 7.92 

C=7, M=2 4,929,570 2,040,801 271.63 0.00 53.42 42.26 4.32 

C=8, M=2 4,853,186 2,231,881 241.56 0.00 64.59 32.05 3.36 

C=9, M=2 4,587,068 2,286,605 208.39 0.00 75.27 22.57 2.16 

* C = 0, M = 0; all gin trash sold at $10/ton 

EV = Models on EV frontier 
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Table 6: Sensitivity analyses for small gin 

Models 

Avg. 

ROIC 

(%) 

Prob. 

Loss (%) 

Prob. ROIC 

> 100% 

Avg. annual 

profit  

(Cash Flow, $) 

S.D. profit 

(Cash Flow, $) 

Panel A: Lower base electricity price 

C=1, M=0 52.44 7.70 11.67 168,487 283,346 

C=2, M=0 45.12 12.29 9.8 259,497 488,653 

C=3, M=0 24.45 37.49 5.45 197,617 593,311 

Panel B: Lower marginal cost of ammonia plant 

C=1, M=1 42.49 7.62 9.12 173,695 284,943 

C=2, M=1 43.37 10.85 8.87 287,383 494,158 

C=3, M=1 25.20 33.88 5.28 225,761 601,975 

Panel C: Lower conversion rate 

C=1, M=0 19.34 43.13 6.93 62,126 191,089 

C=2, M=0 14.27 48.19 5.3 82,035 328,990 

C=3, M=0 1.22 66.82 2.92 9,847 398,163 

Panel D: Higher electricity prices 

C=1, M=0 71.57 4.12 15.58 229,938 313,080 

C=2, M=0 63.21 7.31 13.18 363,520 543,967 

C=3, M=0 38.71 19.85 7.81 312,919 665,178 
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Table 7: Extended sensitivity analyses for small gin 

Models 

Disc. Avg. 

profit 12 

yrs. 

SD disc. 

profit 12 

yrs. 

Disc. 

Avg. 

ROIC 12 

yrs. 

Prob. 

ROIC < 

0 

Prob. 

ROIC 

between 0 

& 250 

Prob. 

ROIC 

between 

250 & 500 

Prob. 

ROIC 

> 500 

Panel A: Lower base electricity price 

C=1, M=0 759,909 364,915 236.52 0.00 60.74 36.61 2.64 

C=2, M=0 1,170,384 628,194 203.52 0.00 71.07 27.01 1.92 

C=3, M=0 891,294 756,695 110.26 2.88 89.08 7.44 0.60 

Panel B: Lower marginal cost of ammonia plant 

C=1, M=1 783,401 366,202 191.64 0.00 76.95 22.57 0.48 

C=2, M=1 1,296,155 631,325 195.63 0.00 75.27 23.53 1.20 

C=3, M=1 1,018,227 764,227 113.66 0.96 91.60 7.08 0.36 

Panel C: Lower conversion rate 

C=1, M=0 280,200 245,015 87.21 8.76 87.64 3.60 0.00 

C=2, M=0 369,993 421,096 64.34 17.77 79.95 2.28 0.00 

C=3, M=0 44,412 505,977 5.49 58.58 40.70 0.72 0.00 

Panel D: Higher electricity prices 

C=1, M=0 1,037,069 402,813 322.78 0.00 34.45 55.94 9.60 

C=2, M=0 1,639,549 696,492 285.11 0.00 47.66 46.46 5.88 

C=3, M=0 1,411,327 844,000 174.59 0.12 81.03 17.41 1.44 
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Table 8: Sensitivity analyses for medium gin 

Models 
Avg. ROIC 

(%) 

Prob. Loss 

(%) 

Prob. ROIC > 

100% 

Avg. annual 

profit  

(Cash Flow, $) 

S.D. profit 

(Cash Flow, $) 

Panel A: Lower base electricity price 

C=1, M=0 102.21 0.12 32.08 328,395 296,175 

C=2, M=0 91.62 0.05 20.4 526,885 575,876 

C=3, M=0 87.79 1.11 18.9 709,681 850,037 

C=4, M=0 88.09 4.01 19.26 904,845 1,133,853 

C=5, M=0 85.07 5.33 18.4 1,054,829 1,381,562 

C=6, M=0 73.24 6.07 15.03 1,056,585 1,465,958 

C=7, M=0 61.67 7.09 11.92 1,011,202 1,569,375 

Panel B: Lower marginal cost of ammonia plant 

C=1, M=1 81.92 0.08 18.22 334,898 296,907 

C=2, M=1 86.08 0.01 18.53 570,363 577,425 

C=3, M=1 86.86 0.66 18.78 778,165 854,677 

C=4, M=1 89.27 3.52 19.88 995,100 1,139,793 

C=5, M=1 87.37 5.22 19.33 1,159,837 1,392,870 

C=6, M=1 76.11 5.98 16.00 1,164,649 1,480,222 

C=7, M=1 64.95 6.62 12.89 1,121,919 1,593,849 

Panel C: Lower conversion rate 

C=1, M=0 68.06 2.99 14.39 218,682 206,708 

C=2, M=0 53.48 2.60 10.57 307,538 389,924 

C=3, M=0 48.32 5.95 9.78 390,599 573,267 

C=4, M=0 47.21 7.06 10.04 484,905 762,191 

C=5, M=0 44.49 8.83 9.5 551,732 928,249 

C=6, M=0 36.34 13.68 7.48 524,198 986,970 

C=7, M=0 28.52 21.99 5.68 467,588 1,057,092 

Panel D: Higher electricity prices 

C=1, M=0 121.91 0.00 46.72 391,695 324,945 

C=2, M=0 113.63 0.00 30.95 653,424 634,654 

C=3, M=0 110.60 0.11 28.37 894,037 939,239 

C=4, M=0 111.75 1.59 28.95 1,147,867 1,254,446 

C=5, M=0 108.53 3.97 27.99 1,345,784 1,531,516 

C=6, M=0 94.87 5.24 23.16 1,368,654 1,631,901 

C=7, M=0 81.33 6.08 18.82 1,333,689 1,750,837 
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Table 9: Extended sensitivity analyses for medium gin 

Models 

Disc. Avg. 

profit 12 

yrs. 

SD disc. 

profit 12 

yrs. 

Disc. 

Avg. 

ROIC 12 

yrs. 

Prob. 

ROIC < 

0 

Prob. 

ROIC 

between 0 

& 250 

Prob. ROIC 

between 

250 & 500 

Prob. 

ROIC > 

500 

Panel A: Lower base electricity price 

C=1, M=0 1,481,129 377,212 460.99 0.00 0.24 66.51 33.25 

C=2, M=0 2,376,358 740,010 413.23 0.00 3.96 73.71 22.33 

C=3, M=0 3,200,807 1,094,780 395.95 0.00 10.56 69.39 20.05 

C=4, M=0 4,081,035 1,467,255 397.31 0.00 13.45 64.71 21.85 

C=5, M=0 4,757,494 1,806,227 383.67 0.00 17.77 61.94 20.29 

C=6, M=0 4,765,414 1,884,815 330.32 0.00 33.49 55.34 11.16 

C=7, M=0 4,560,729 2,025,123 278.13 0.00 52.82 41.06 6.12 

Panel B: Lower marginal cost of ammonia plant 

C=1, M=1 1,510,457 377,319 369.49 0.00 4.44 85.83 9.72 

C=2, M=1 2,572,453 740,088 388.26 0.00 4.80 79.71 15.49 

C=3, M=1 3,509,683 1,098,521 391.76 0.00 7.44 74.55 18.01 

C=4, M=1 4,488,102 1,475,010 402.64 0.00 7.80 70.95 21.25 

C=5, M=1 5,231,103 1,815,142 394.05 0.00 10.44 69.03 20.53 

C=6, M=1 5,252,804 1,892,178 343.28 0.00 24.49 63.75 11.76 

C=7, M=1 5,060,085 2,041,324 292.95 0.00 45.50 47.90 6.60 

Panel C: Lower conversion rate 

C=1, M=0 986,300 260,520 306.98 0.00 27.13 70.35 2.52 

C=2, M=0 1,387,058 497,920 241.20 0.00 60.86 38.42 0.72 

C=3, M=0 1,761,680 735,048 217.93 0.00 68.67 30.61 0.72 

C=4, M=0 2,187,021 982,521 212.92 0.00 69.75 29.41 0.84 

C=5, M=0 2,488,426 1,207,993 200.68 0.00 72.99 26.05 0.96 

C=6, M=0 2,364,240 1,263,469 163.88 0.00 83.31 16.45 0.24 

C=7, M=0 2,108,919 1,355,612 128.61 0.12 90.76 9.00 0.12 

Panel D: Higher electricity prices 

C=1, M=0 1,766,623 413,849 549.85 0.00 0.00 41.30 58.70 

C=2, M=0 2,947,078 814,534 512.48 0.00 0.00 54.14 45.86 

C=3, M=0 4,032,288 1,208,472 498.81 0.00 0.00 57.50 42.50 

C=4, M=0 5,177,116 1,620,984 504.02 0.00 0.00 56.54 43.46 

C=5, M=0 6,069,759 1,995,721 489.49 0.00 0.96 59.42 39.62 

C=6, M=0 6,172,909 2,089,713 427.88 0.00 4.44 68.91 26.65 

C=7, M=0 6,015,209 2,246,261 366.83 0.00 16.93 66.99 16.09 
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Table 10: Output combination for small gin 

Capacity Electricity (MWh) Ammonia (tons) Total Electricity (MWh) 

C=1, M=0 5,225 - 5,225 

C=2, M=0 9,192 - 9,192 

C=3, M=0 10,677 - 10,677 

C=4, M=0 10,752 - 10,752 

C=5, M=0 10,752 - 10,752 

C=1, M=1 3,771 138 5,288 

C=2, M=1 7,102 195 9,245 

C=3, M=1 8,792 173 10,696 

C=4, M=1 9,157 145 10,752 

C=5, M=1 9,400 123 10,752 

C=1, M=2 3,771 138 5,288 

C=2, M=2 6,666 234 9,245 

C=3, M=2 7,910 253 10,696 

C=4, M=2 8,259 227 10,752 

C=5, M=2 8,495 205 10,752 
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Table 11: Output combination with sensitivity analysis for small gin 

Capacity Electricity (MWh) Ammonia (tons) Total Electricity (MWh) 

Panel A: Lower base electricity price 

C=1, M=0 5,226 - 5,226 

C=2, M=0 9,192 - 9,192 

C=3, M=0 10,677 - 10,677 

Panel B: Lower marginal cost of ammonia plant 

C=1, M=1 3,314 179 5,288 

C=2, M=1 6,515 248 9,245 

C=3, M=1 8,310 217 10,696 

Panel C: Lower conversion rate 

C=1, M=0 3,484 - 3,484 

C=2, M=0 6,128 - 6,128 

C=3, M=0 7,118 - 7,118 

Panel D: Higher electricity prices 

C=1, M=0 5,226 - 5,226 

C=2, M=0 9,193 - 9,193 

C=3, M=0 10,678 - 10,678 
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Table 12: Output combination for medium gin 

Capacity Electricity (MWh) Ammonia (tons) Total Electricity (MWh) 

C=1, M=0 5,346 - 5,346 

C=2, M=0 10,683 - 10,683 

C=3, M=0 15,676 - 15,676 

C=4, M=0 20,614 - 20,614 

C=5, M=0 24,890 - 24,890 

C=6, M=0 27,575 - 27,575 

C=7, M=0 29,490 - 29,490 

C=8, M=0 31,090 - 31,090 

C=9, M=0 32,031 - 32,031 

C=1, M=1 3,854 142 5,413 

C=2, M=1 8,234 234 10,811 

C=3, M=1 12,968 263 15,863 

C=4, M=1 17,744 281 20,841 

C=5, M=1 22,020 278 25,074 

C=6, M=1 24,906 253 27,693 

C=7, M=1 27,030 233 29,590 

C=8, M=1 28,804 215 31,165 

C=9, M=1 29,907 196 32,063 

C=1, M=2 3,854 142 5,413 

C=2, M=2 7,700 283 10,811 

C=3, M=2 11,544 393 15,863 

C=4, M=2 15,887 451 20,847 

C=5, M=2 19,945 469 25,105 

C=6, M=2 22,769 451 27,735 

C=7, M=2 24,897 432 29,644 

C=8, M=2 26,676 413 31,215 

C=9, M=2 27,829 387 32,084 
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Table 13: Output combination with sensitivity analysis for medium gin  

Capacity Electricity (MWh) Ammonia (tons) Total Electricity (MWh) 

Panel A: Lower base electricity price 

C=1, M=0 5,347 - 5,347 

C=2, M=0 10,684 - 10,684 

C=3, M=0 15,677 - 15,677 

C=4, M=0 20,615 - 20,615 

C=5, M=0 24,891 - 24,891 

C=6, M=0 27,577 - 27,577 

C=7, M=0 29,491 - 29,491 

Panel B: Lower marginal cost of ammonia plant 

C=1, M=1 3,387 184 5,413 

C=2, M=1 7,557 296 10,811 

C=3, M=1 12,281 326 15,863 

C=4, M=1 17,044 345 20,841 

C=5, M=1 21,331 340 25,074 

C=6, M=1 24,262 312 27,693 

C=7, M=1 26,441 286 29,590 

Panel C: Lower conversion rate 

C=1, M=0 3,564 - 3,564 

C=2, M=0 7,122 - 7,122 

C=3, M=0 10,451 - 10,451 

C=4, M=0 13,743 - 13,743 

C=5, M=0 16,593 - 16,593 

C=6, M=0 18,384 - 18,384 

Panel D: Higher electricity prices 

C=1, M=0 5,347 - 5,347 

C=2, M=0 10,685 - 10,685 

C=3, M=0 15,679 - 15,679 

C=4, M=0 20,617 - 20,617 

C=5, M=0 24,893 - 24,893 

C=6, M=0 27,578 - 27,578 
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Table 14: Breakdown of operation hours  

 Date Hours of operation  Total hours  

Peak electricity 

Dec 16-Dec 31 5am-9am (4hr) 16 x 4  

Jan 01-Feb 28 5am-9am and 5pm-8pm (7hr)  59 x 7  

Mar 01-Mar 15 5am-9am (4hr) 15 x 4 

Jun 01-Sept 15 1pm-6pm (5hr) 107 x 5  

Total peak  1072 MWe 

Sub-peak 

electricity 

Dec 16-Dec 31 9am-8pm (11hr) 16 x 11  

Jan 01-Feb 28 9am-5pm (8hr) 59 x 8  

Mar 01-Mar 15 9am-8pm (11hr) 15 x 11  

Mar 16-May 31 6am-8pm (14hr) 77 x 14  

Jun 01-Sept 15 8am-1pm (5hr) 107 x 5  

Total sub-peak  2426 MWe 

Base electricity 
Dec 15-May 31 8pm-12am and 4am (5hr) 167 x 5  

Jun 01-Sept 15 6pm-12am and 4am-8am (10hr) 107 x 10  

Total base  1905 MWe 

Total  5403 MWe  

 

 


