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ABSTRACT 
Researchers commonly use distance variables to: (i) estimate the dir
ect influence of a landmark on an outcome of interest, such as a 
neighborhood park on home price; or (ii) control for omitted spatial 
influences that affect predictions of key policy variables. While both 
uses continue, the use of distance as a control, such as distance to 
Central Business District (CBD), is now more common. Using distance 
to a given position such as CBD is added to multivariate analysis as 
a method to capture all remaining, or omitted spatial effects that 
influence the dependent variable. We show that there is a latent and 
inherent identification problem with the distance variable; and we 
show that this extends to the use of distance as a control. These 
biases affect more than the distance variable. They generate incon
sistent estimates for all other spatially distributed variables in a 
model. We then introduce an alternative control that captures 
unmodeled influences that vary across space, and we show that this 
fully stabilizes all model parameter estimates and measures of model 
efficiency.
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Introduction

The regional sciences often have used distance variables to explain spatially distributed 

events. Distance variables have analyzed issues as diverse as the nesting choices of 

ground birds to issues that affect residential home purchases of young families. It is 

hypothesized, respectively, that the nesting choices of a bird or the home purchases of a 

young family respond to the distance of the bird nest to a windmill (Grisham et al., 

2014; Zuta et al., 2012) or the distance of a family home to a school (Metz, 2015).
Distance variables make an attractive baseline for statistical modeling. In the case of 

home choice, proximity to various amenities clearly motivates housing choices and price. 

Over the decades, there is a tradition to estimate home choice response to the distance 

to a Superfund site (Ihlanfeldt & Taylor, 2004; Taylor et al., 2016), an environmental haz

ard (Brasington & Hite, 2005), a historic district (Noonan et al., 2007), or an employment 

center (Harrison & Rubinfeld, 1978). More recently, Letdin and Shim (2019) compare the 

value of distance to work versus distance to urban amenities to sort home location 
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choices among demographically distinct households. Nase et al. (2019) use distance to 
the nearest train station and highway exit to explain rental values of Amsterdam office 
buildings; and Tontisirin and Anantsuksomsri (2021) use distance to multiple landmarks 
to isolate real estate use responses to access to Bangkok transit stations. Other notable 
and recent papers that use distance variables are Dumm et al. (2016), Robinson et al. 
(2017), Lawani et al. (2019), Dauth and Haller (2020), Sun et al. (2021), van Vuuren (2023), 
and Abbiasov and Sedov (2023).

Commonly, the distance to the Central Business District (CBD) is employed to control 
for the omitted effects of position on parameter estimates of spatially distributed 
explanatory variables, such as home age or crime rate. Examples include: Schuetz (2009), 
Meltzer and Schuetz (2010), Osland (2010), and Dermisi and McDonald (2010), 
Yilmazkuday and Yilmazkuday (2016), Jayet et al. (2016), Salvati et al. (2016), and Nguyen 
and Diez (2017). More recently, distance to CBD was used as a control in Borck and 
Schrauth (2021) and Blanco (2023).

The literature does suggest some discomfort with the distance variable. Evidence by 
Palmquist’s (2005) use of a discrete zonal (0/1) variable to assess home price differentials 
around a Superfund site by proximity within one mile (or not) replaces a continuous dis
tance variable. Subsequently, Cameron (2006) explicitly challenges the use of continuous 
distance variables as a spatial control. On logical grounds, distance to the CBD for 
example makes little sense if industrial areas 8 miles southeast of CBD were compared 
to residential neighborhoods 8 miles to the northeast, even controlling for other 
explanatory variables. Finally, Ross et al. (2011) used constructed data to test distance 
variable consistency. Simulations illustrated ubiquitous instability in parameter values of 
distance variables as more were added to a model. Taken together, Cameron (2006) and 
Ross et al. (2011) point to a concern for omitted variable bias leading to inconsistent par
ameter estimates of all spatially distributed variables. It is not an efficiency concern 
per se.

Perhaps due to these concerns, there has been a decline in the use of distance varia
bles as the primary causal or policy variable in a model. Yet the alternative use of a dis
tance variable to control for unmodeled spatial influence continues to enjoy currency 
(see Bondemark & Merkel, 2023; Borck & Schrauth, 2021; Diao et al., 2023). Also, other 
works extend Palmquist’s dichotomous zone variable by adopting multiple zones: Diao 
et al. (2023) and Bogin and Doerner (2019) employ, respectively, three dichotomous 
zones – within 0–1, 1–2, or 2–3 kilometers from a landmark, or two zones – within 0–5, 
or 5–15 miles from a landmark. We submit these extensions are merely discretized dis
tance variables subject to the same raft of concerns. Though these works reveal discom
fort with the use of continuous distance variables, they leave an incomplete 
understanding of the problems with distance variables. Though use of continuous dis
tance variable has declined, the distance variable remains in common use. Our scan of 
regional science journals finds one or more articles in nearly every issue since 2020 that 
use a distance variable as a meaningful estimate of the value of proximity to a given 
landmark. These include high impact journals; and articles that use a distance variable 
are present among most cited recent works.

Returning to Cameron’s (2006) observation that measured distance is free of direction, 
it follows that the direction free Euclidean distance makes a poor control for unmodeled 
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spatial information. After all, Euclid deliberately constructed the distance formula to 
abstract away from position. So, in the search for a valid control to capture omitted spa
tial influences directly defined by position, the control must capture relative direction 
between any two positions – not distance.

The control we construct unpacks the Euclidean distance formula into its four nested 
variables. Consider the measured distance from point A to B (DistanceAB), in long-lat 
space as:

DistanceAB ¼ LongitudeA − LongitudeBð Þ
2
þ LatitudeA − LatitudeBð Þ

2
h i1

2 

This formula embeds four nested variables that measure relative position between any 
two points based on direction: difference in longitude and in latitude, and the square of 
each:

longA − longBð Þ; longA − longBð Þ
2
; latA − latBð Þ; latA − latBð Þ

2
n o

A consistent control for omitted, spatially correlated, influences that affect the depend
ent variable should allow the fixed position to be changed without any change to other 
model parameters. As the control only needs to account for omitted influences due to 
relative position, we expect a control to operate effectively at any position. All four varia
bles above can anchor to a different fixed position. Our prediction is that all parameter 
estimates remain the same except for the control variables themselves. We illustrate this 
correction through two empirical examples.

The empirical work concludes by integrating the correction with spatial econometrics. 
The spatial lagged explanatory variable (SLX) model is added. The SLX adds a new set of 
independent variables to the model; so, the outcome is qualitatively identical. All param
eter values remain the same, including lagged variables, regardless of the fixed point 
chosen. Yet, the fixed point corrections are beyond the spillover influences of adjacency 
per se and focus on the impacts of specific position within the data set.

This control strategy has wide implications for the regional sciences and affiliated dis
ciplines. Clearly, the key policy variable or variable of interest in these disciplines is 
almost invariably spatially distributed, e.g., crime rates, school quality. The correction 
herein captures unmodeled (omitted) cross-correlated spatial effects among the inde
pendent variables to secure consistent parameter estimates for all spatially distributed 
variables in a model. This is a powerful procedural tool that permits a clean sorting of 
the weighted influences of each independent variable on the dependent variable, cor
rected for omitted spatial effects. This is especially relevant if the spatially distributed 
independent variable is the key policy variable under examination.

Concerns for Distance Variables

There is seldom a single feature over the landscape of a study area where its proximity 
influences home price. Rather, it is reasonable to expect that the distance to one type of 
landmark will co-vary with the distance to many others. We expect, for example, proxim
ity to a recreational park to co-vary with proximity to amenities common to residential 
neighborhoods, but not to industrial processing centers, and vice versa.
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This is where the problem arises. For a distance variable to be identified in a multivari
ate model, the measured distance to that landmark from a subject observation must 
exhibit truly independent variation from every other measured distance to every other 
landmark. The problem with distance variables is that there is no independent variation 
among them. The shift in measured distance to one landmark precisely predetermines 
the change in measured distance to every other. This is easily apprehended through two 
examples.

Consider a home positioned equidistant between a well-appointed park and a toxic 
dump site. A home price change between any two points along this line might be meas
ured with perfect accuracy in a multivariate model. For example, a one-unit move in 
either direction may alter home price by exactly $700. Though the total effect of this 
move may be estimated with perfect accuracy, it is impossible to partition the total 
effect between the two influences. A move closer to the park may be the result of a 
$100 benefit of being closer to the park and a $600 benefit of being further from the 
dump; or a $600 benefit of being closer to the park and a $100 benefit of being further 
from the dump. The two cannot be distinguished with the information available because 
change in the distance to the park and distance to the dump co-vary by an exact 
process.

A visual extension of this example is shown in Figure 1. Consider a home sale at pos
ition O and another at position P. Positions A, B, and C are landmarks, and each posi
tively influences home value. As home position varies, we cannot partition the marginal 
value change from position O to position P for each distance to A, B, or C. It may be use
ful to consider O as the sample mean longitude and latitude position of a home valued 
at the average home price in the sample. In that way, a move from O to P is the 
expected change in overall value in a move from position O toward C. Yet like the park- 
and-toxic dump problem, this estimated value change in moving closer to C is also due 
to changing distances away from B and A. The independent effects are not identified.

As Figure 1 illustrates, the observed change in home sale price at P, which is closer to 
C, precisely determines the change in measured distance to A and B. There is simply no 
random or independent functional relationship among proximity among these three 
points; or no independent variation among distance variables exists – the very definition 
of non-identification. Any estimation of distances to points A and B are fully determined 
by the change in distance to C.

An important observation is that the overall prediction accuracy of different models 
would be unchanged from model to model. That is, the $700 gain of one unit closer to 
the park or the price change akin to value change from points O to P above are esti
mated with the same accuracy, regardless of the array of distanced variables used. This 

Figure 1. Graphical representation of the interdependence among distance variables.
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is an intuitive explanation that the problem is not one of model efficiency but more a 
problem of omitted variable inconsistency.

Finally, this lack of independence between distance variables extends to high covari
ance among all spatially distributed independent variables. To illustrate the problem, 
consider homes of a different age. Older homes are positioned closer to downtown; and 
they are also more valuable. A failure to craft some control for location of this spatially 
distributed variable may be due only to downtown proximity or designation as an histor
ical district (Noonan et al., 2007). Only a control for location will avert a spurious conclu
sion that aging houses are intrinsically more valuable.

Non-Identification of Distance Variables

Formally, the above examples point to the non-identification of distance variables. We 
formally define this only to establish testable hypotheses for the empirical examples. 
Recall, a model variable is unidentified if it provides no new information about variation 
in the dependent variable. Once one distance variable enters a model, no new informa
tion about variation in the dependent variable is available by adding others, that is, 
PrYjX1ð Þ ¼ ðPrYjX1, X2Þ: Non-identification arises when the probability of Y given X1 is 

unchanged by the addition of X2, such as different mixes of distance to A, B, and C 
above. Technically this condition indicates a ‘collapse of the design matrix’, which means 
the distance variable is unidentified.

We underscore that the lack of unique information when adding a distance variable to 
a model is not to be confused with multicollinearity, which occurs when there is a scalar 
relationship between one or more columns of the explanatory variable matrix. In perfect 
multicollinearity, the OLS estimator cannot be used because the X 0Xð Þ

−1 
matrix is not 

invertible. However, a functional relationship can exist between two columns of the design 
matrix, such as age and age squared of a house, that typically does allow X 0Xð Þ

−1 
to be 

inverted. So, the core definition of nonidentification is satisfied if PrYjX1ð Þ ¼ ðPrYjX1, X2Þ, 
even if X 0Xð Þ

−1 
inverts. Once the position of activity, Y, and distance to landmark, X1, is 

known, no new information about the activity at position Y is available from the addition 
of other distance variables. Simply, that is because there is no independent variation 
between distances to landmarks X1 and X2: This is borne out by our empirical results. 
Modeled parameters change as new distance variables are added to a model even though 
explanatory power does not meaningfully change, if at all.

The Appendix A reviews the trigonometric identity whereby the longitude and latitude 
position of one point can be defined directly by the longitude and latitude positions of 
any other two points. That is, information about the longitude and latitude of the 
dependent variable (i.e., its position) and longitude and latitude of one independent (dis
tance) variable precisely defines the longitude and latitude of any other landmark and 
no independent information exists.

Control for Position: A Spatial Fixed Point

Deaton and Hoehn (2004) presented a well cited example of the use of distance to the 
central business district (CBD) as a control. The variable was used as a control for 
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broader effects that impact the value of a park to home values in multiple neighbor
hoods across a large metropolitan area. The authors intended to isolate the effects of 
this neighborhood amenity in otherwise similar neighborhoods, except for the neighbor
hood location. The logic is sound, but the variable is not identified; and, therefore, this 
strategy continues to lead to inconsistent estimates, the sole purpose for its application. 
We do retain the logic of this practice and develop a consistent control below.

Figure 2 offers an intuitive explanation why a control for position requires the four 
variables used. It also helps to explain why a large change in explanatory power does 
not result – or why the fixed point corrects for position as a strategy to capture omitted 
spatial influences on parameters than on overall explanatory power. The base records 
long-lat position, and the height records expected value from an estimated mode, in this 
case sales price. So, each height-position point represents the expected value attribut
able to position from an estimated model. If that model includes spatially distributed 
variables such as crime rate or tree cover, parameter estimates of these variables will be 
fitted to capture positional information as well. The goal, especially for the policy vari
able of interest, is to disentangle this effect from parameter estimates for every model 
variable. It is this omitted information that forms the chief rationale for the use of dis
tance as an anchor, such as CBD. Yet a distance variable can make a partial correction 
for overall position because, as we have seen, distance is not oriented by direction.

The contours of this value map are not surprising. For convenience, Mean is the 
expected value at the mean position for every independent variable from which any 
regression estimate is calibrated. Optimal is merely a position of convenience to show 
the highest expected value in the data set. Clearly, value change is not linear across the 
distance d from Mean to Optimal. Indeed, virtually all positions of distance d realize a dif
ferent marginal value change, even though the model parameters exert some control for 
differences in crime rate, tree cover and home age. Again, injecting distance from Mean 
as a model variable to any other position does not control this. In both linear regression 
or maximum likelihood, a control that passes through Mean must account for overall 
long-lat position and capture the curvature of expected value generated by the model.

On Figure 2, consider the value change from the small total downward latitude 
change to Landmark from Mean, and consider the longer longitudinal movement to the 
right to Landmark. Moving downward to the lower latitude of Landmark from Mean, 
value decreases at an increasing rate of decent. Yet moving to the right, longitude value 

Figure 2. Graphical representation of the value changes from the mean position to any landmark 
decomposed into second order changes in longitude and latitude.
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change is at first slightly increasing, but then slowly decreases; or value change by longi
tude would be positive and then would be negative. Clearly, the four position variables 
will capture any value change attributable to position.

Every point will generate an expected value of latitude and longitude difference based 
on its position. The average change for each of the four directional variables will be fit
ted to the model to estimate all parameters. Of note, as the reference position changes, 
say from Mean to Optimal these four positional parameters change, but every position 
will control for the same average change in value between positions. As a result, only 
one reference position, that is, only one set of the four directional control variables is 
sufficient; addition of more than one reference positions simultaneously in a single model 
will result in perfect linear dependency among the two sets of control variables. 
Moreover, all other parameters values and efficiency measures would be unchanged. 
Adding these four control variables captures available home price variation attributed to 
omitted spatial position.

This correction allows two very strong predictions. Given the spatially distributed 
model attribute variables, adding the four directional variables will control for overall 
position by generating the same estimated coefficient values for every model variable 
regardless of the fixed reference point used. Secondly, the control for this omitted spatial 
variation in a model will leave unchanged values of model efficiency, such as R2, Log 
Likelihood, or AIC as fixed position changes.

Empirical Examples

We selected data sets with the intention to cover extreme ranges: high resolution, low 
numbers; and low resolution, large numbers. One data set has only 365 observed sales 
in Lubbock, Texas and covers an area only 4.8 miles wide and 8 miles long. This data set 
has direct observation of demographics via survey. The other has 13,327 observed sales 
in Columbus, Ohio; yet local demographics rely on the 2000 census with data aggre
gated at the census tract level, when the average census tract size was 4,000 house
holds; so, this data has very low demographic resolution. Concern from several readers 
and conferences suggested that large, high resolution data sets may realize a spurious 
response to this control. In other words, what makes the correction work is the high 
quality of data as spatial variation is already well fitted to the existing model. Our goal is 
to demonstrate the range of the fixed point correction as a general arithmetic principle, 
not to draw causal assertions from these results.

Lubbock, Texas

Data in Lubbock are 365 residential sales from June 2006 to December 2008 reported in 
Farmer et al. (2012). MLS data includes sales price, square footage, lot size, house age, 
presence of a garage. We also collect household level demographic data including 
income, family size, owner occupancy of residence, employment status, etc.

Panel A in Figure 3 maps the study area of seventeen neighborhoods, named by the 
Lubbock Realtor Association and scattered across a five-by-eight-mile area. The popula
tion is prima facie homogeneous: 83% white; mean family size is 3.85; and incomes fall 
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within the 40 to 95 of national percentiles. Homes are detached single family units. More 
than 80% are owner-occupied. Unemployment rates are 2%; and 58% of households had 
two working adults. Panel A in Table 1 presents the summary statistics of the variables 
from Lubbock, TX.

Panel A in Figure 3 shows two prominent locations: Texas Tech University (Tech), 
which is a strong employment draw and close to the city center; and South Plains Mall 
(Mall), which is an employment center and regional retail shopping area. Distance from 
each property to each landmark was defined by longitude and latitude distances, or sim
ple Euclidean distance.

Columbus, Ohio

Data for Columbus is a sample of 13,327 single-family detached house sales in central 
Ohio in 2000. The data have been used in multiple studies prior to the release of the 
2010 census. These include Brasington (2007), Brasington and Sarama (2008), and FARES 
(2002). The original data set records sales prices from five metropolitan areas in the 
greater Columbus area as well as home age, square feet, presence of a second story and 
demographic census tract averages, racial heterogeneity, income, and crime levels. Panel 
B in Table 1 presents the summary statistics of the variables from Columbus, OH.

Panel B in Figure 3 shows two prominent locations in Columbus: Ohio State University 
(OSU), which is a strong employment draw; and the Nationwide Center (NWD), which is 
an employment and business center with some retail shopping and recreation. The 
observations in the central ring are in Franklin County, and far more diverse than the 
neighborhoods of Lubbock, Texas. So, we test datasets of different sizes, different resolu
tions, and different levels of diversity.

Figure 3. Map of study areas showing the locations of residential sales, the mean position of all resi
dential sales (yellow box), and two landmarks (red triangles).  
Note: Shades of blue of residential locations indicate average distance from the two landmarks (darker 
shades correspond to closer ‘average’ proximity to landmarks).
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Econometric Results and Discussion

Lubbock, Texas

Shiroya (2010) examined if the Lubbock data could embed discernable submarkets des
pite its very small numbers and remarkable, prima facie demographic homogeneity. 
Shiroya hypothesized that an environmental variable, progressed landscape – a diverse 
vegetation structure from short bushes, short trees and a higher tree canopy (MacArthur 
& MacArthur, 1961) might sort otherwise homogeneous data into submarkets based on 
this taste parameter, following Sieg et al. (2002) who sorted housing choice over a very 
large, multiple city area in southern California. Field methods used for the progressed 
landscape are described in Farmer et al. (2012) and Leuenberger (2015). We use this 
environmental variable, clearly spatially distributed, to assess if the fixed point correction 
could parse remaining spatial information over such a small space and small sample size 
with seemingly homogenous residents, regardless of position of the fixed point 
correction.

Columbus, Ohio

The challenge for the correction in Columbus is much the opposite. The dual policy vari
ables in Columbus track the separate influences of racial composition and crime rates on 
home price. Demographic data are at the resolution of the 2000 census tract, far lower 
than the house-by-house demographics in Lubbock, TX. More importantly, wealth and 
home age reach some of their highest values in the older cities that ring Columbus, so 
there is no obvious spatial path through the study area of these variables. In that sense, 
the concern is that the correction might not harmonize parameters and fail as a control 
to correct to consistent parameters.

Key Results

Tables 2 and 3 compare six hedonic home price models in Lubbock, TX and Columbus, 
OH, respectively. The first model uses only home and neighborhood attributes with no 
distance variables. The second and third models use a different distance variable to dif
ferent positions in the data set; the fourth model uses both distance variables; and the 
fifth and sixth models use the fixed point correction, alternatively anchored to each of 
the two positions as a control for omitted spatial effects. Five critical tests are evaluated:

� We expect parameter estimates of spatially distributed variables to stabilize only 
under models with fixed position controls (models 5 and 6).

� We expect parameter estimates of non-spatially distributed variables such as 
square footage or presence of a second story or garage to be relatively stable 
across models for each city.

� We expect measures of asymptotic efficiency ðAdjusted R2, AIC, LogLikelihoodÞ to 
converge across all models whether they include one distance variable, no dis
tance variable, or the fixed point correction; and convergence will strengthen 
asymptotically with sample size.

10 M. C. FARMER ET AL.
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� We expect two of the parameters of the fixed point correction variables 
f longA − longBð Þ, ðlatA − latBÞg to change as fixed positions for the correction 
changes.

� Fixing the influence of location may pick up some new information, resulting in 
marginally higher efficiency measures, especially with high resolution data.

Lubbock, Texas
The Lubbock, Texas demographics across the study space are more uniform than those in 
Columbus. The study space is also much smaller with higher resolution data. Table 2 com
pares parameter estimates for Lubbock model with the natural log of home prices as the 
dependent variable and natural log of continuous independent variables; model 1 is the 
baseline model without any distance or fixed point variables, models 2–4 include distance 
variables and models 5 and 6 include fixed point correction variables (we also report the 
results from the linear models in Appendix Tables A1–A3.). Value changes in distance to 
Texas Tech and the Mall show substantial change between models 2–4 and 3–4; for Texas 
Tech the parameter increases from −56.236 to −1.852 and for the Mall, it increases from 
0.125 to 1.933 with a change in the statistical significance (t-value changes from 1.106 to 
5.384). Across models 2 and 4, the estimates for home construction variables which are not 
spatially distributed (square footage, lot size, house age) are quite stable.

The effect of different distance variables on spatially distributed variables (the environ
mental proxy) in the model is especially acute. The most notable parameter instability 
arises in the policy variable itself. The parameter estimates for the environmental proxy 
decreases from 0.012 and 0.013 in models 2 and 3 respectively to -0.003 in model 4; 
most noteworthy, the estimated effect of the environmental variable in the models with 
fixed point correction (models 5 and 6) is -0.0002, which is substantially different from 
the distance corrected and baseline models. Moreover, the environmental policy variable 
has a t-value of over 1.50 across models 1–3 yet highly insignificant in the fixed position 
correction models (5 and 6) with t-values of 0.025.

Importantly, all identical parameter estimates are realized for every model variable in 
the two fixed position control models, confirming the key hypothesis. Aligned with pre
dictions, there is a noticeable improvement in the efficiency measures with the inclusion 
of the fixed point correction variables in models 5 and 6. The stability of efficiency across 
models with unstable parameter estimates (models 2–4) for spatially distributed variables 
occurs as predicted. Finally, the parameters of the correction variables vary as position of 
the correction for position changes with changing the fixed point.

Columbus, Ohio
The Columbus, Ohio study area reflects a more common scale of regional science exam
ination: it is a much larger space, with far more observations and a more diverse popula
tion. Table 3 demonstrates the potential magnitude of problems with nonidentification 
of distance variables. Like the last model, both dependent and continuous independent 
variables are logged. Between models 2 and 4, the estimated effect on home price for 
the distance to the University (OSU) decreases by 152.53%, from −0.493 to −1.245; from 
model 3 to 4, the parameter for the distance to NWD changes from −0.476 to 0.822.
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As expected, the fixed point correction models fully stabilize all parameter estimates. 
In uncorrected models, the key spatially distributed variables of rate of criminal offences, 
and racial composition (percentage white) show some volatility. Home age and square 
footage show the least volatility as the spatial distribution of the oldest homes tends to 
ring the city. (Columbus is ringed by once independent cities. As the state capital, these 
municipalities were annexed. Newer homes were built within Columbus city limits.) 
Estimates for criminal offenses per district vary the most from the baseline model (with
out distance or fixed point correction) but vary by about 5% among models with some 
distance variable, although these stabilize with the addition of the fixed position correc
tions (models 5 and 6).

A key policy variable is racial composition (percentage of white residents) which also 
demonstrates parameter instability across models without fixed point correction. The 
estimate for the value of a one percent (percentage point) increase in the percentage of 
white households reaches both its highest and most significant value in the corrected 
models. Corrected models tend to generate the highest or lowest estimated values for 
spatially distributed models than models with distance variables. Comparing value 
changes in house price between neighborhoods that have a majority non-white popula
tion and all others, this corrected model parameter predicts an increase in home value 
close to 0.081% for every percentage point increase in the number of white households.

Once again, the overall information in the models appears unaltered and there is 
remarkable stability in efficiency measures across models with unstable parameter esti
mates (models 2–4), although expectedly we observe a relatively poor fit because of the 
low resolution data. Models generate virtually identical R2 statistic, even with different 
parameter estimates for spatially distributed variables. The Log Likelihood and AIC statis
tics for models 2–6 (with distance variables and fixed point corrections) are also similar. 
Expectedly, there is a small improvement in efficiency measures in these models with 
low resolution data, with little additional information being picked up with fixing the 
influence of location (models 5 and 6). Finally, parameters of all variables only stabilize 
with the inclusion of fixed point correction variables.

Alternative Modelling Choices

Some alternatives are worth noting. Driving time and a single zonal distance variable 
might have a different outcome than a distance variable. Driving time has a weakness in 
common with Euclidean distance in that both form a lattice over the data that tracks 
omitted influences across space, much like illustrated on Figure 2. Our experiments with 
single zonal variables (sports center; hazardous waste site) show none of the inconsisten
cies of distance variable while multi-zonal variables perform as continuous distance varia
bles, simply discretized.

An area of immediate concern is the extent to which this spatial economic tool com
pares, duplicates, replaces, or resolves a different problem altogether than other spatial 
econometric tools. We test the spatial lagged-X variable model (SLX) below and present 
results with and without the fixed point control in parallel to the test above.

Table 4 compares results for Lubbock and Columbus of a new model with lagged 
independent variables, with and without the fixed point correction. The overall 
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performance of the correction is unchanged. The effect of the SLX model on the parame
ters is to partition the parameters into the direct effects and the indirect influences of 
their nearest neighbors – the sums of which are largely equivalent to the singular effects 
in the original models. The SLX model appears to be managing neighborhood effects of 
individual house characteristics such as size and age, and immediate inter-neighborhood 
effects of features such as crime rate, race or school quality. The correction for overall 
position is an independent effect and does not appear to inject any noticeable, unique 
or duplicatory pattern in the spatial or non-spatial parameters between the fixed point 
corrections and the SLX regression estimates. So, the SLX is a complementary model 
component that exerts a wholly independent effect from position per se. The two practi
ces are not substitutes.

Implications of Findings

The examples above provide strong empirical tests that demonstrate the problem with 
distance variables and the utility of a robust location correction to repair that problem 
when used as a control for overall position in the study area. In the case of a reasonably 
good model, the fixed point correction in a model adds new information that explains 
more variation overall and provides consistency that distance variables cannot provide 
to account for the spatial position of observations. If the model fails to account for large 
systematic spatially distributed variation uncorrelated with model variables, the correc
tion may add some explanatory power, but that should signal model revision. An out
come of this study is that low resolution data, rather than a small number of 
observations, is more likely to exhibit this property and itself acts as an additional diag
nostic for the researcher.

The correction itself is a simple mathematical consequence of position in standard lin
ear regression or two variable distributions used in maximum likelihood estimation. 
Distance variables, however, clutter the issue as they co-vary with other spatially distrib
uted variables. That is, distance variables occlude the capacity to examine location-spe
cific effects in a study area as the distance variable is itself free of positional information. 
Yet the problem caused by the position of an observation, which distance variables try 
to solve when used as an anchor position, is ubiquitous.

We view the fixed point correction as a routine contribution which is easy to imple
ment and should be accompanied by a test using another potion to replicate results. 
Future research to compare, contrast and integrate the fixed point correction alongside 
spatial Durbin models or spatial error models is needed to enhance our understanding 
the effects and nature of spatial variation in the regional sciences broadly, including (per
haps especially) models of causal inference.

Conclusion

Our work illustrates the instability of distance variable parameters. These inconsistencies 
meet the conditions of unidentified variables; or, PrYjX1ð Þ ¼ ðPrYjX1, X2Þ: That is, X1 and 
X2 contain the same information (total explanatory power) as either one independently; 
or there is no independent variation. In addition, all other parameter estimates of spa
tially distributed variables are not consistent among the choice of a distance variable.
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The unreliable indication of hedonic value of an amenity inferred by a distance vari
able also explains the ineffectiveness of the distance to the CBD as a means to control 
for the spurious effects of location. This problem of spurious effects of location on the 
estimated effects of many key policy variables, raised by Deaton and Hoehn (2004), is 
very real; but the use of a distance variable to control for unmodeled influences that 
arise from the specific location of an observation fails because measured distance is not 
location specific. Yet some correction is still needed.

We suggest the use of a new control, formed by unpacking the Euclidean distance for
mula into its four nested variables which are specific to location: 

longA − longBð Þ; longA − longBð Þ
2
; latA − latBð Þ; latA − latBð Þ

2
n o

, where A is the subject 
position and B is any random fixed position. Replacing distance to the CBD with these 
four variables to any and only one B position fully stabilizes parameter estimates for spa
tially distributed variables, a result that holds regardless of the fixed position used to 
construct the correction.

Empirical results corroborate four key hypotheses of this study. The four correction 
variables constructed from longitude and latitude distances between any observation 
and a fixed position fully stabilizes parameter estimates for spatially and non-spatially 
distributed variables in the models, a result that holds regardless of the fixed position 
chosen to construct the correction.

This work illustrates a severe identification problem with distance variables. Though 
distance variables do not consistently estimate the effects of a landmark on home price, 
there remains a need to control for the effects of position on other spatially distributed 
variables (e.g., home age, crimes rates, local environmental outcomes, education out
comes). By unpacking the Euclidean measure for distance, a control is introduced and 
tested which fully stabilizes all model parameter estimates and measures of model 
efficiency.

Notes
1. Triangulation of position C is exactly the condition where AB, BC and AC are all known. Given 

those three distances, the angular position of C, vis a vis A and B, can be found from tanð/BACÞ
and tanð/CBAÞ created by adding C at (x3,y3) Introducing position C only defines triangle ABC, 
thus recovering its own position but adding nothing that tells us more about position A. In fact, 
there is an infinite number of identical ABC triangles possible around position A, rotating in an 
360� circle around A, and forming a sphere around A around the x, y plane.

2. The familiar example is a vehicle that is either red or blue. To examine the effect of color on 
twilight accidents, knowledge that the range of colors for a type of vehicle is red or blue 
means that knowledge of the model of the vehicle observed in an accident and the 
observation that the vehicle is not red or is red perfectly predicts that the vehicle is blue or 
not blue, respectively; thus making the addition of another color variable redundant and the 
second color variable an unidentified explanatory variable.
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Appendix A   

A simple proof shows that coordinates, c1 and c2, for point C on Figure 1 can be defined directly 
from the coordinates, fa1, a2, b1, b2g: Because triangle ABC is defined, we know the degree angles 
hA at A and hB at B. So, given coordinates ða1, a2Þ; angle degree hA; coordinates ðb1, b2Þ; angle 
degree hB; and the length AB, then ðc1, c2Þ can be recovered.

From the slope, m ¼ b2−a2
b1−a1

, we find the angle of inclination from A to B, hAB (the angle that 
forms between line AB and the x-axis), which is: 

hAB ¼ tan−1m (1) 

Using hAB we can define the angle of inclination from A to C, hAC , from: 

hA ¼ hAC − hAB (2) 

This draws a line from A parallel to the x-axis to divides hA into hAC and hAB:

To find c1 and c2, we also use the distance AC and the law of sines to calculate: 

sinð180 − hA − hBÞ

AB
¼

sin hBð Þ

AC
(3) 

Therefore AC ¼ ABsin hBð Þ

sin 180−hA−hBð Þ
: With AC and the angle of inclination, hAC , coordinates ðc1, c2Þ can 

be directly defined by: 

c1, c2ð Þ ¼ ða1 þ AC cos hACð Þ, a2 þ AC sin ðhACÞÞ (4) 

As an example, let A and B be coordinates, (2, 3) and (2, 5); and both angles A and B be 30�:
This makes AB ¼ 10

1
2 and the slope, m ¼ − 1

3 : So, the angle of inclination from A to B is:

hAB ¼ tan−1 −
1
3

� �

� 11:565�

and the angle of inclination from A to C is:

hAC � 30� − 11:565�ð Þ � 18:435�

and using (3), the distance from A to C becomes:

AC � 1:826 

Now, from basepoint A ¼ ð2, 3Þ, using (4), coordinates of C ¼ ðc1, c2Þ are defined: ð3:789, 3:366Þ
As a check, points ð2, 3Þ and ð3:789, 3:366Þ form distance AC ¼ 3:2þ 0:133ð Þ

1
2 � 1:82, matching 

AC above. Also, all distances and opposite angles satisfy the law of sines, represented in equation (3).
Critically, point C only conveys information to complete the triangle; or, the information needed 

to triangulate its own position, given coordinates of A and B:1 Intuitively, point B can be rotated 
360 degrees around point A for the same distance. As C rotates with B, that rotation preserves the 
same relative distances that define triangle ½ABC�; or, nothing new is discovered about the position 
of A by adding point C: No more information about position A beyond f a1, a2ð Þ, ðb1, b2Þg is intro
duced. The same is true for any position in the study area. Critically, information available from 
ðc1, c2Þ is fully characterized by coordinates ða1, a2Þ and ðb1, b2Þ – all that is required for the design 
matrix to collapse2 and for any additional distance variable to be unidentified.
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